//! Checks for uses of const which the type is not Freeze (Cell-free). //! //! This lint is **deny** by default. use rustc::lint::{LateContext, LateLintPass, Lint, LintArray, LintPass}; use rustc::{declare_tool_lint, lint_array}; use rustc::hir::*; use rustc::hir::def::Def; use rustc::ty::{self, TypeFlags}; use rustc::ty::adjustment::Adjust; use rustc_errors::Applicability; use rustc_typeck::hir_ty_to_ty; use syntax_pos::{DUMMY_SP, Span}; use std::ptr; use crate::utils::{in_constant, in_macro, is_copy, span_lint_and_then}; /// **What it does:** Checks for declaration of `const` items which is interior /// mutable (e.g. contains a `Cell`, `Mutex`, `AtomicXxxx` etc). /// /// **Why is this bad?** Consts are copied everywhere they are referenced, i.e. /// every time you refer to the const a fresh instance of the `Cell` or `Mutex` /// or `AtomicXxxx` will be created, which defeats the whole purpose of using /// these types in the first place. /// /// The `const` should better be replaced by a `static` item if a global /// variable is wanted, or replaced by a `const fn` if a constructor is wanted. /// /// **Known problems:** A "non-constant" const item is a legacy way to supply an /// initialized value to downstream `static` items (e.g. the /// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit, /// and this lint should be suppressed. /// /// **Example:** /// ```rust /// use std::sync::atomic::{Ordering::SeqCst, AtomicUsize}; /// /// // Bad. /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12); /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct /// /// // Good. /// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15); /// STATIC_ATOM.store(9, SeqCst); /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance /// ``` declare_clippy_lint! { pub DECLARE_INTERIOR_MUTABLE_CONST, correctness, "declaring const with interior mutability" } /// **What it does:** Checks if `const` items which is interior mutable (e.g. /// contains a `Cell`, `Mutex`, `AtomicXxxx` etc) has been borrowed directly. /// /// **Why is this bad?** Consts are copied everywhere they are referenced, i.e. /// every time you refer to the const a fresh instance of the `Cell` or `Mutex` /// or `AtomicXxxx` will be created, which defeats the whole purpose of using /// these types in the first place. /// /// The `const` value should be stored inside a `static` item. /// /// **Known problems:** None /// /// **Example:** /// ```rust /// use std::sync::atomic::{Ordering::SeqCst, AtomicUsize}; /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12); /// /// // Bad. /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct /// /// // Good. /// static STATIC_ATOM: AtomicUsize = CONST_ATOM; /// STATIC_ATOM.store(9, SeqCst); /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance /// ``` declare_clippy_lint! { pub BORROW_INTERIOR_MUTABLE_CONST, correctness, "referencing const with interior mutability" } #[derive(Copy, Clone)] enum Source { Item { item: Span, }, Assoc { item: Span, ty: Span, }, Expr { expr: Span, }, } impl Source { fn lint(&self) -> (&'static Lint, &'static str, Span) { match self { Source::Item { item } | Source::Assoc { item, .. } => ( DECLARE_INTERIOR_MUTABLE_CONST, "a const item should never be interior mutable", *item, ), Source::Expr { expr } => ( BORROW_INTERIOR_MUTABLE_CONST, "a const item with interior mutability should not be borrowed", *expr, ), } } } fn verify_ty_bound<'a, 'tcx>( cx: &LateContext<'a, 'tcx>, ty: ty::Ty<'tcx>, source: Source, ) { if ty.is_freeze(cx.tcx, cx.param_env, DUMMY_SP) || is_copy(cx, ty) { // an UnsafeCell is !Copy, and an UnsafeCell is also the only type which // is !Freeze, thus if our type is Copy we can be sure it must be Freeze // as well. return; } let (lint, msg, span) = source.lint(); span_lint_and_then(cx, lint, span, msg, |db| { if in_macro(span) { return; // Don't give suggestions into macros. } match source { Source::Item { .. } => { let const_kw_span = span.from_inner_byte_pos(0, 5); db.span_suggestion_with_applicability( const_kw_span, "make this a static item", "static".to_string(), Applicability::MachineApplicable, ); } Source::Assoc { ty: ty_span, .. } => { if ty.flags.contains(TypeFlags::HAS_FREE_LOCAL_NAMES) { db.span_help(ty_span, &format!("consider requiring `{}` to be `Copy`", ty)); } } Source::Expr { .. } => { db.help( "assign this const to a local or static variable, and use the variable here", ); } } }); } pub struct NonCopyConst; impl LintPass for NonCopyConst { fn get_lints(&self) -> LintArray { lint_array!(DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST) } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonCopyConst { fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, it: &'tcx Item) { if let ItemKind::Const(hir_ty, ..) = &it.node { let ty = hir_ty_to_ty(cx.tcx, hir_ty); verify_ty_bound(cx, ty, Source::Item { item: it.span }); } } fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, trait_item: &'tcx TraitItem) { if let TraitItemKind::Const(hir_ty, ..) = &trait_item.node { let ty = hir_ty_to_ty(cx.tcx, hir_ty); verify_ty_bound(cx, ty, Source::Assoc { ty: hir_ty.span, item: trait_item.span }); } } fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, impl_item: &'tcx ImplItem) { if let ImplItemKind::Const(hir_ty, ..) = &impl_item.node { let item_node_id = cx.tcx.hir.get_parent_node(impl_item.id); let item = cx.tcx.hir.expect_item(item_node_id); // ensure the impl is an inherent impl. if let ItemKind::Impl(_, _, _, _, None, _, _) = item.node { let ty = hir_ty_to_ty(cx.tcx, hir_ty); verify_ty_bound(cx, ty, Source::Assoc { ty: hir_ty.span, item: impl_item.span }); } } } fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) { if let ExprKind::Path(qpath) = &expr.node { // Only lint if we use the const item inside a function. if in_constant(cx, expr.id) { return; } // make sure it is a const item. match cx.tables.qpath_def(qpath, expr.hir_id) { Def::Const(_) | Def::AssociatedConst(_) => {}, _ => return, }; // climb up to resolve any field access and explicit referencing. let mut cur_expr = expr; let mut dereferenced_expr = expr; let mut needs_check_adjustment = true; loop { let parent_id = cx.tcx.hir.get_parent_node(cur_expr.id); if parent_id == cur_expr.id { break; } if let Some(Node::Expr(parent_expr)) = cx.tcx.hir.find(parent_id) { match &parent_expr.node { ExprKind::AddrOf(..) => { // `&e` => `e` must be referenced needs_check_adjustment = false; } ExprKind::Field(..) => { dereferenced_expr = parent_expr; needs_check_adjustment = true; } ExprKind::Index(e, _) if ptr::eq(&**e, cur_expr) => { // `e[i]` => desugared to `*Index::index(&e, i)`, // meaning `e` must be referenced. // no need to go further up since a method call is involved now. needs_check_adjustment = false; break; } ExprKind::Unary(UnDeref, _) => { // `*e` => desugared to `*Deref::deref(&e)`, // meaning `e` must be referenced. // no need to go further up since a method call is involved now. needs_check_adjustment = false; break; } _ => break, } cur_expr = parent_expr; } else { break; } } let ty = if needs_check_adjustment { let adjustments = cx.tables.expr_adjustments(dereferenced_expr); if let Some(i) = adjustments.iter().position(|adj| match adj.kind { Adjust::Borrow(_) | Adjust::Deref(_) => true, _ => false, }) { if i == 0 { cx.tables.expr_ty(dereferenced_expr) } else { adjustments[i - 1].target } } else { // No borrow adjustments = the entire const is moved. return; } } else { cx.tables.expr_ty(dereferenced_expr) }; verify_ty_bound(cx, ty, Source::Expr { expr: expr.span }); } } }