rust-clippy/clippy_lints/src/dereference.rs
2022-06-28 13:02:08 -04:00

1126 lines
44 KiB
Rust

use clippy_utils::diagnostics::{span_lint_and_sugg, span_lint_hir_and_then};
use clippy_utils::source::{snippet_with_applicability, snippet_with_context};
use clippy_utils::sugg::has_enclosing_paren;
use clippy_utils::ty::{expr_sig, peel_mid_ty_refs, variant_of_res};
use clippy_utils::{get_parent_expr, is_lint_allowed, path_to_local, walk_to_expr_usage};
use rustc_ast::util::parser::{PREC_POSTFIX, PREC_PREFIX};
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::Applicability;
use rustc_hir::intravisit::{walk_ty, Visitor};
use rustc_hir::{
self as hir, BindingAnnotation, Body, BodyId, BorrowKind, Expr, ExprKind, GenericArg, HirId, ImplItem,
ImplItemKind, Item, ItemKind, Local, MatchSource, Mutability, Node, Pat, PatKind, Path, QPath, TraitItem,
TraitItemKind, TyKind, UnOp,
};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeckResults};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::{symbol::sym, Span, Symbol};
use rustc_trait_selection::infer::InferCtxtExt;
declare_clippy_lint! {
/// ### What it does
/// Checks for explicit `deref()` or `deref_mut()` method calls.
///
/// ### Why is this bad?
/// Dereferencing by `&*x` or `&mut *x` is clearer and more concise,
/// when not part of a method chain.
///
/// ### Example
/// ```rust
/// use std::ops::Deref;
/// let a: &mut String = &mut String::from("foo");
/// let b: &str = a.deref();
/// ```
///
/// Use instead:
/// ```rust
/// let a: &mut String = &mut String::from("foo");
/// let b = &*a;
/// ```
///
/// This lint excludes:
/// ```rust,ignore
/// let _ = d.unwrap().deref();
/// ```
#[clippy::version = "1.44.0"]
pub EXPLICIT_DEREF_METHODS,
pedantic,
"Explicit use of deref or deref_mut method while not in a method chain."
}
declare_clippy_lint! {
/// ### What it does
/// Checks for address of operations (`&`) that are going to
/// be dereferenced immediately by the compiler.
///
/// ### Why is this bad?
/// Suggests that the receiver of the expression borrows
/// the expression.
///
/// ### Example
/// ```rust
/// fn fun(_a: &i32) {}
///
/// let x: &i32 = &&&&&&5;
/// fun(&x);
/// ```
///
/// Use instead:
/// ```rust
/// # fn fun(_a: &i32) {}
/// let x: &i32 = &5;
/// fun(x);
/// ```
#[clippy::version = "pre 1.29.0"]
pub NEEDLESS_BORROW,
style,
"taking a reference that is going to be automatically dereferenced"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for `ref` bindings which create a reference to a reference.
///
/// ### Why is this bad?
/// The address-of operator at the use site is clearer about the need for a reference.
///
/// ### Example
/// ```rust
/// let x = Some("");
/// if let Some(ref x) = x {
/// // use `x` here
/// }
/// ```
///
/// Use instead:
/// ```rust
/// let x = Some("");
/// if let Some(x) = x {
/// // use `&x` here
/// }
/// ```
#[clippy::version = "1.54.0"]
pub REF_BINDING_TO_REFERENCE,
pedantic,
"`ref` binding to a reference"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for dereferencing expressions which would be covered by auto-deref.
///
/// ### Why is this bad?
/// This unnecessarily complicates the code.
///
/// ### Example
/// ```rust
/// let x = String::new();
/// let y: &str = &*x;
/// ```
/// Use instead:
/// ```rust
/// let x = String::new();
/// let y: &str = &x;
/// ```
#[clippy::version = "1.60.0"]
pub EXPLICIT_AUTO_DEREF,
complexity,
"dereferencing when the compiler would automatically dereference"
}
impl_lint_pass!(Dereferencing => [
EXPLICIT_DEREF_METHODS,
NEEDLESS_BORROW,
REF_BINDING_TO_REFERENCE,
EXPLICIT_AUTO_DEREF,
]);
#[derive(Default)]
pub struct Dereferencing {
state: Option<(State, StateData)>,
// While parsing a `deref` method call in ufcs form, the path to the function is itself an
// expression. This is to store the id of that expression so it can be skipped when
// `check_expr` is called for it.
skip_expr: Option<HirId>,
/// The body the first local was found in. Used to emit lints when the traversal of the body has
/// been finished. Note we can't lint at the end of every body as they can be nested within each
/// other.
current_body: Option<BodyId>,
/// The list of locals currently being checked by the lint.
/// If the value is `None`, then the binding has been seen as a ref pattern, but is not linted.
/// This is needed for or patterns where one of the branches can be linted, but another can not
/// be.
///
/// e.g. `m!(x) | Foo::Bar(ref x)`
ref_locals: FxIndexMap<HirId, Option<RefPat>>,
}
struct StateData {
/// Span of the top level expression
span: Span,
hir_id: HirId,
position: Position,
}
struct DerefedBorrow {
count: usize,
msg: &'static str,
}
enum State {
// Any number of deref method calls.
DerefMethod {
// The number of calls in a sequence which changed the referenced type
ty_changed_count: usize,
is_final_ufcs: bool,
/// The required mutability
target_mut: Mutability,
},
DerefedBorrow(DerefedBorrow),
ExplicitDeref {
// Span and id of the top-level deref expression if the parent expression is a borrow.
deref_span_id: Option<(Span, HirId)>,
},
ExplicitDerefField {
name: Symbol,
},
Reborrow {
deref_span: Span,
deref_hir_id: HirId,
},
Borrow,
}
// A reference operation considered by this lint pass
enum RefOp {
Method(Mutability),
Deref,
AddrOf,
}
struct RefPat {
/// Whether every usage of the binding is dereferenced.
always_deref: bool,
/// The spans of all the ref bindings for this local.
spans: Vec<Span>,
/// The applicability of this suggestion.
app: Applicability,
/// All the replacements which need to be made.
replacements: Vec<(Span, String)>,
/// The [`HirId`] that the lint should be emitted at.
hir_id: HirId,
}
impl<'tcx> LateLintPass<'tcx> for Dereferencing {
#[expect(clippy::too_many_lines)]
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
// Skip path expressions from deref calls. e.g. `Deref::deref(e)`
if Some(expr.hir_id) == self.skip_expr.take() {
return;
}
if let Some(local) = path_to_local(expr) {
self.check_local_usage(cx, expr, local);
}
// Stop processing sub expressions when a macro call is seen
if expr.span.from_expansion() {
if let Some((state, data)) = self.state.take() {
report(cx, expr, state, data);
}
return;
}
let typeck = cx.typeck_results();
let (kind, sub_expr) = if let Some(x) = try_parse_ref_op(cx.tcx, typeck, expr) {
x
} else {
// The whole chain of reference operations has been seen
if let Some((state, data)) = self.state.take() {
report(cx, expr, state, data);
}
return;
};
match (self.state.take(), kind) {
(None, kind) => {
let expr_ty = typeck.expr_ty(expr);
let (position, adjustments) = walk_parents(cx, expr);
match kind {
RefOp::Deref => {
if let Position::FieldAccess(name) = position
&& !ty_contains_field(typeck.expr_ty(sub_expr), name)
{
self.state = Some((
State::ExplicitDerefField { name },
StateData { span: expr.span, hir_id: expr.hir_id, position },
));
} else if position.is_deref_stable() {
self.state = Some((
State::ExplicitDeref { deref_span_id: None },
StateData { span: expr.span, hir_id: expr.hir_id, position },
));
}
}
RefOp::Method(target_mut)
if !is_lint_allowed(cx, EXPLICIT_DEREF_METHODS, expr.hir_id)
&& position.lint_explicit_deref() =>
{
self.state = Some((
State::DerefMethod {
ty_changed_count: if deref_method_same_type(expr_ty, typeck.expr_ty(sub_expr)) {
0
} else {
1
},
is_final_ufcs: matches!(expr.kind, ExprKind::Call(..)),
target_mut,
},
StateData {
span: expr.span,
hir_id: expr.hir_id,
position
},
));
},
RefOp::AddrOf => {
// Find the number of times the borrow is auto-derefed.
let mut iter = adjustments.iter();
let mut deref_count = 0usize;
let next_adjust = loop {
match iter.next() {
Some(adjust) => {
if !matches!(adjust.kind, Adjust::Deref(_)) {
break Some(adjust);
} else if !adjust.target.is_ref() {
deref_count += 1;
break iter.next();
}
deref_count += 1;
},
None => break None,
};
};
// Determine the required number of references before any can be removed. In all cases the
// reference made by the current expression will be removed. After that there are four cases to
// handle.
//
// 1. Auto-borrow will trigger in the current position, so no further references are required.
// 2. Auto-deref ends at a reference, or the underlying type, so one extra needs to be left to
// handle the automatically inserted re-borrow.
// 3. Auto-deref hits a user-defined `Deref` impl, so at least one reference needs to exist to
// start auto-deref.
// 4. If the chain of non-user-defined derefs ends with a mutable re-borrow, and re-borrow
// adjustments will not be inserted automatically, then leave one further reference to avoid
// moving a mutable borrow.
// e.g.
// fn foo<T>(x: &mut Option<&mut T>, y: &mut T) {
// let x = match x {
// // Removing the borrow will cause `x` to be moved
// Some(x) => &mut *x,
// None => y
// };
// }
let deref_msg =
"this expression creates a reference which is immediately dereferenced by the compiler";
let borrow_msg = "this expression borrows a value the compiler would automatically borrow";
let (required_refs, msg) = if position.can_auto_borrow() {
(1, if deref_count == 1 { borrow_msg } else { deref_msg })
} else if let Some(&Adjust::Borrow(AutoBorrow::Ref(_, mutability))) =
next_adjust.map(|a| &a.kind)
{
if matches!(mutability, AutoBorrowMutability::Mut { .. }) && !position.is_reborrow_stable()
{
(3, deref_msg)
} else {
(2, deref_msg)
}
} else {
(2, deref_msg)
};
if deref_count >= required_refs {
self.state = Some((
State::DerefedBorrow(DerefedBorrow {
// One of the required refs is for the current borrow expression, the remaining ones
// can't be removed without breaking the code. See earlier comment.
count: deref_count - required_refs,
msg,
}),
StateData { span: expr.span, hir_id: expr.hir_id, position },
));
} else if position.is_deref_stable() {
self.state = Some((
State::Borrow,
StateData {
span: expr.span,
hir_id: expr.hir_id,
position
},
));
}
},
RefOp::Method(..) => (),
}
},
(
Some((
State::DerefMethod {
target_mut,
ty_changed_count,
..
},
data,
)),
RefOp::Method(_),
) => {
self.state = Some((
State::DerefMethod {
ty_changed_count: if deref_method_same_type(typeck.expr_ty(expr), typeck.expr_ty(sub_expr)) {
ty_changed_count
} else {
ty_changed_count + 1
},
is_final_ufcs: matches!(expr.kind, ExprKind::Call(..)),
target_mut,
},
data,
));
},
(Some((State::DerefedBorrow(state), data)), RefOp::AddrOf) if state.count != 0 => {
self.state = Some((
State::DerefedBorrow(DerefedBorrow {
count: state.count - 1,
..state
}),
data,
));
},
(Some((State::DerefedBorrow(state), data)), RefOp::AddrOf) => {
let position = data.position;
report(cx, expr, State::DerefedBorrow(state), data);
if position.is_deref_stable() {
self.state = Some((
State::Borrow,
StateData {
span: expr.span,
hir_id: expr.hir_id,
position,
},
));
}
},
(Some((State::DerefedBorrow(state), data)), RefOp::Deref) => {
let position = data.position;
report(cx, expr, State::DerefedBorrow(state), data);
if let Position::FieldAccess(name) = position
&& !ty_contains_field(typeck.expr_ty(sub_expr), name)
{
self.state = Some((
State::ExplicitDerefField { name },
StateData { span: expr.span, hir_id: expr.hir_id, position },
));
} else if position.is_deref_stable() {
self.state = Some((
State::ExplicitDeref { deref_span_id: None },
StateData { span: expr.span, hir_id: expr.hir_id, position },
));
}
},
(Some((State::Borrow, data)), RefOp::Deref) => {
if typeck.expr_ty(sub_expr).is_ref() {
self.state = Some((
State::Reborrow {
deref_span: expr.span,
deref_hir_id: expr.hir_id,
},
data,
));
} else {
self.state = Some((
State::ExplicitDeref {
deref_span_id: Some((expr.span, expr.hir_id)),
},
data,
));
}
},
(
Some((
State::Reborrow {
deref_span,
deref_hir_id,
},
data,
)),
RefOp::Deref,
) => {
self.state = Some((
State::ExplicitDeref {
deref_span_id: Some((deref_span, deref_hir_id)),
},
data,
));
},
(state @ Some((State::ExplicitDeref { .. }, _)), RefOp::Deref) => {
self.state = state;
},
(Some((State::ExplicitDerefField { name }, data)), RefOp::Deref)
if !ty_contains_field(typeck.expr_ty(sub_expr), name) =>
{
self.state = Some((State::ExplicitDerefField { name }, data));
},
(Some((state, data)), _) => report(cx, expr, state, data),
}
}
fn check_pat(&mut self, cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>) {
if let PatKind::Binding(BindingAnnotation::Ref, id, name, _) = pat.kind {
if let Some(opt_prev_pat) = self.ref_locals.get_mut(&id) {
// This binding id has been seen before. Add this pattern to the list of changes.
if let Some(prev_pat) = opt_prev_pat {
if pat.span.from_expansion() {
// Doesn't match the context of the previous pattern. Can't lint here.
*opt_prev_pat = None;
} else {
prev_pat.spans.push(pat.span);
prev_pat.replacements.push((
pat.span,
snippet_with_context(cx, name.span, pat.span.ctxt(), "..", &mut prev_pat.app)
.0
.into(),
));
}
}
return;
}
if_chain! {
if !pat.span.from_expansion();
if let ty::Ref(_, tam, _) = *cx.typeck_results().pat_ty(pat).kind();
// only lint immutable refs, because borrowed `&mut T` cannot be moved out
if let ty::Ref(_, _, Mutability::Not) = *tam.kind();
then {
let mut app = Applicability::MachineApplicable;
let snip = snippet_with_context(cx, name.span, pat.span.ctxt(), "..", &mut app).0;
self.current_body = self.current_body.or(cx.enclosing_body);
self.ref_locals.insert(
id,
Some(RefPat {
always_deref: true,
spans: vec![pat.span],
app,
replacements: vec![(pat.span, snip.into())],
hir_id: pat.hir_id
}),
);
}
}
}
}
fn check_body_post(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'_>) {
if Some(body.id()) == self.current_body {
for pat in self.ref_locals.drain(..).filter_map(|(_, x)| x) {
let replacements = pat.replacements;
let app = pat.app;
let lint = if pat.always_deref {
NEEDLESS_BORROW
} else {
REF_BINDING_TO_REFERENCE
};
span_lint_hir_and_then(
cx,
lint,
pat.hir_id,
pat.spans,
"this pattern creates a reference to a reference",
|diag| {
diag.multipart_suggestion("try this", replacements, app);
},
);
}
self.current_body = None;
}
}
}
fn try_parse_ref_op<'tcx>(
tcx: TyCtxt<'tcx>,
typeck: &'tcx TypeckResults<'_>,
expr: &'tcx Expr<'_>,
) -> Option<(RefOp, &'tcx Expr<'tcx>)> {
let (def_id, arg) = match expr.kind {
ExprKind::MethodCall(_, [arg], _) => (typeck.type_dependent_def_id(expr.hir_id)?, arg),
ExprKind::Call(
Expr {
kind: ExprKind::Path(path),
hir_id,
..
},
[arg],
) => (typeck.qpath_res(path, *hir_id).opt_def_id()?, arg),
ExprKind::Unary(UnOp::Deref, sub_expr) if !typeck.expr_ty(sub_expr).is_unsafe_ptr() => {
return Some((RefOp::Deref, sub_expr));
},
ExprKind::AddrOf(BorrowKind::Ref, _, sub_expr) => return Some((RefOp::AddrOf, sub_expr)),
_ => return None,
};
if tcx.is_diagnostic_item(sym::deref_method, def_id) {
Some((RefOp::Method(Mutability::Not), arg))
} else if tcx.trait_of_item(def_id)? == tcx.lang_items().deref_mut_trait()? {
Some((RefOp::Method(Mutability::Mut), arg))
} else {
None
}
}
// Checks whether the type for a deref call actually changed the type, not just the mutability of
// the reference.
fn deref_method_same_type<'tcx>(result_ty: Ty<'tcx>, arg_ty: Ty<'tcx>) -> bool {
match (result_ty.kind(), arg_ty.kind()) {
(ty::Ref(_, result_ty, _), ty::Ref(_, arg_ty, _)) => result_ty == arg_ty,
// The result type for a deref method is always a reference
// Not matching the previous pattern means the argument type is not a reference
// This means that the type did change
_ => false,
}
}
/// The position of an expression relative to it's parent.
#[derive(Clone, Copy)]
enum Position {
MethodReceiver,
/// The method is defined on a reference type. e.g. `impl Foo for &T`
MethodReceiverRefImpl,
Callee,
FieldAccess(Symbol),
Postfix,
Deref,
/// Any other location which will trigger auto-deref to a specific time.
DerefStable(i8),
/// Any other location which will trigger auto-reborrowing.
ReborrowStable(i8),
Other(i8),
}
impl Position {
fn is_deref_stable(self) -> bool {
matches!(self, Self::DerefStable(_))
}
fn is_reborrow_stable(self) -> bool {
matches!(self, Self::DerefStable(_) | Self::ReborrowStable(_))
}
fn can_auto_borrow(self) -> bool {
matches!(self, Self::MethodReceiver | Self::FieldAccess(_) | Self::Callee)
}
fn lint_explicit_deref(self) -> bool {
matches!(self, Self::Other(_) | Self::DerefStable(_) | Self::ReborrowStable(_))
}
fn precedence(self) -> i8 {
match self {
Self::MethodReceiver
| Self::MethodReceiverRefImpl
| Self::Callee
| Self::FieldAccess(_)
| Self::Postfix => PREC_POSTFIX,
Self::Deref => PREC_PREFIX,
Self::DerefStable(p) | Self::ReborrowStable(p) | Self::Other(p) => p,
}
}
}
/// Walks up the parent expressions attempting to determine both how stable the auto-deref result
/// is, and which adjustments will be applied to it. Note this will not consider auto-borrow
/// locations as those follow different rules.
#[allow(clippy::too_many_lines)]
fn walk_parents<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> (Position, &'tcx [Adjustment<'tcx>]) {
let mut adjustments = [].as_slice();
let mut precedence = 0i8;
let ctxt = e.span.ctxt();
let position = walk_to_expr_usage(cx, e, &mut |parent, child_id| {
// LocalTableInContext returns the wrong lifetime, so go use `expr_adjustments` instead.
if adjustments.is_empty() && let Node::Expr(e) = cx.tcx.hir().get(child_id) {
adjustments = cx.typeck_results().expr_adjustments(e);
}
match parent {
Node::Local(Local { ty: Some(ty), span, .. }) if span.ctxt() == ctxt => {
Some(binding_ty_auto_deref_stability(ty, precedence))
},
Node::Item(&Item {
kind: ItemKind::Static(..) | ItemKind::Const(..),
def_id,
span,
..
})
| Node::TraitItem(&TraitItem {
kind: TraitItemKind::Const(..),
def_id,
span,
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Const(..),
def_id,
span,
..
}) if span.ctxt() == ctxt => {
let ty = cx.tcx.type_of(def_id);
Some(if ty.is_ref() {
Position::DerefStable(precedence)
} else {
Position::Other(precedence)
})
},
Node::Item(&Item {
kind: ItemKind::Fn(..),
def_id,
span,
..
})
| Node::TraitItem(&TraitItem {
kind: TraitItemKind::Fn(..),
def_id,
span,
..
})
| Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(..),
def_id,
span,
..
}) if span.ctxt() == ctxt => {
let output = cx.tcx.fn_sig(def_id.to_def_id()).skip_binder().output();
Some(if !output.is_ref() {
Position::Other(precedence)
} else if output.has_placeholders() || output.has_opaque_types() {
Position::ReborrowStable(precedence)
} else {
Position::DerefStable(precedence)
})
},
Node::Expr(parent) if parent.span.ctxt() == ctxt => match parent.kind {
ExprKind::Ret(_) => {
let output = cx
.tcx
.fn_sig(cx.tcx.hir().body_owner_def_id(cx.enclosing_body.unwrap()))
.skip_binder()
.output();
Some(if !output.is_ref() {
Position::Other(precedence)
} else if output.has_placeholders() || output.has_opaque_types() {
Position::ReborrowStable(precedence)
} else {
Position::DerefStable(precedence)
})
},
ExprKind::Call(func, _) if func.hir_id == child_id => (child_id == e.hir_id).then(|| Position::Callee),
ExprKind::Call(func, args) => args
.iter()
.position(|arg| arg.hir_id == child_id)
.zip(expr_sig(cx, func))
.and_then(|(i, sig)| sig.input_with_hir(i))
.map(|(hir_ty, ty)| match hir_ty {
// Type inference for closures can depend on how they're called. Only go by the explicit
// types here.
Some(ty) => binding_ty_auto_deref_stability(ty, precedence),
None => param_auto_deref_stability(ty.skip_binder(), precedence),
}),
ExprKind::MethodCall(_, args, _) => {
let id = cx.typeck_results().type_dependent_def_id(parent.hir_id).unwrap();
args.iter().position(|arg| arg.hir_id == child_id).map(|i| {
if i == 0 {
// Check for calls to trait methods where the trait is implemented on a reference.
// Two cases need to be handled:
// * `self` methods on `&T` will never have auto-borrow
// * `&self` methods on `&T` can have auto-borrow, but `&self` methods on `T` will take
// priority.
if e.hir_id != child_id {
Position::ReborrowStable(precedence)
} else if let Some(trait_id) = cx.tcx.trait_of_item(id)
&& let arg_ty = cx.tcx.erase_regions(cx.typeck_results().expr_ty_adjusted(e))
&& let ty::Ref(_, sub_ty, _) = *arg_ty.kind()
&& let subs = cx.typeck_results().node_substs_opt(child_id).unwrap_or_else(
|| cx.tcx.mk_substs([].iter())
) && let impl_ty = if cx.tcx.fn_sig(id).skip_binder().inputs()[0].is_ref() {
// Trait methods taking `&self`
sub_ty
} else {
// Trait methods taking `self`
arg_ty
} && impl_ty.is_ref()
&& cx.tcx.infer_ctxt().enter(|infcx|
infcx
.type_implements_trait(trait_id, impl_ty, subs, cx.param_env)
.must_apply_modulo_regions()
)
{
Position::MethodReceiverRefImpl
} else {
Position::MethodReceiver
}
} else {
param_auto_deref_stability(cx.tcx.fn_sig(id).skip_binder().inputs()[i], precedence)
}
})
},
ExprKind::Struct(path, fields, _) => {
let variant = variant_of_res(cx, cx.qpath_res(path, parent.hir_id));
fields
.iter()
.find(|f| f.expr.hir_id == child_id)
.zip(variant)
.and_then(|(field, variant)| variant.fields.iter().find(|f| f.name == field.ident.name))
.map(|field| param_auto_deref_stability(cx.tcx.type_of(field.did), precedence))
},
ExprKind::Field(child, name) if child.hir_id == e.hir_id => Some(Position::FieldAccess(name.name)),
ExprKind::Unary(UnOp::Deref, child) if child.hir_id == e.hir_id => Some(Position::Deref),
ExprKind::Match(child, _, MatchSource::TryDesugar | MatchSource::AwaitDesugar)
| ExprKind::Index(child, _)
if child.hir_id == e.hir_id =>
{
Some(Position::Postfix)
},
_ if child_id == e.hir_id => {
precedence = parent.precedence().order();
None
},
_ => None,
},
_ => None,
}
})
.unwrap_or(Position::Other(precedence));
(position, adjustments)
}
// Checks the stability of auto-deref when assigned to a binding with the given explicit type.
//
// e.g.
// let x = Box::new(Box::new(0u32));
// let y1: &Box<_> = x.deref();
// let y2: &Box<_> = &x;
//
// Here `y1` and `y2` would resolve to different types, so the type `&Box<_>` is not stable when
// switching to auto-dereferencing.
fn binding_ty_auto_deref_stability(ty: &hir::Ty<'_>, precedence: i8) -> Position {
let TyKind::Rptr(_, ty) = &ty.kind else {
return Position::Other(precedence);
};
let mut ty = ty;
loop {
break match ty.ty.kind {
TyKind::Rptr(_, ref ref_ty) => {
ty = ref_ty;
continue;
},
TyKind::Path(
QPath::TypeRelative(_, path)
| QPath::Resolved(
_,
Path {
segments: [.., path], ..
},
),
) => {
if let Some(args) = path.args
&& args.args.iter().any(|arg| match arg {
GenericArg::Infer(_) => true,
GenericArg::Type(ty) => ty_contains_infer(ty),
_ => false,
})
{
Position::ReborrowStable(precedence)
} else {
Position::DerefStable(precedence)
}
},
TyKind::Slice(_)
| TyKind::Array(..)
| TyKind::BareFn(_)
| TyKind::Never
| TyKind::Tup(_)
| TyKind::Ptr(_)
| TyKind::TraitObject(..)
| TyKind::Path(_) => Position::DerefStable(precedence),
TyKind::OpaqueDef(..)
| TyKind::Infer
| TyKind::Typeof(..)
| TyKind::Err => Position::ReborrowStable(precedence),
};
}
}
// Checks whether a type is inferred at some point.
// e.g. `_`, `Box<_>`, `[_]`
fn ty_contains_infer(ty: &hir::Ty<'_>) -> bool {
struct V(bool);
impl Visitor<'_> for V {
fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
if self.0
|| matches!(
ty.kind,
TyKind::OpaqueDef(..) | TyKind::Infer | TyKind::Typeof(_) | TyKind::Err
)
{
self.0 = true;
} else {
walk_ty(self, ty);
}
}
fn visit_generic_arg(&mut self, arg: &GenericArg<'_>) {
if self.0 || matches!(arg, GenericArg::Infer(_)) {
self.0 = true;
} else if let GenericArg::Type(ty) = arg {
self.visit_ty(ty);
}
}
}
let mut v = V(false);
v.visit_ty(ty);
v.0
}
// Checks whether a type is stable when switching to auto dereferencing,
fn param_auto_deref_stability(ty: Ty<'_>, precedence: i8) -> Position {
let ty::Ref(_, mut ty, _) = *ty.kind() else {
return Position::Other(precedence);
};
loop {
break match *ty.kind() {
ty::Ref(_, ref_ty, _) => {
ty = ref_ty;
continue;
},
ty::Infer(_)
| ty::Error(_)
| ty::Param(_)
| ty::Bound(..)
| ty::Opaque(..)
| ty::Placeholder(_)
| ty::Dynamic(..) => Position::ReborrowStable(precedence),
ty::Adt(..) if ty.has_placeholders() || ty.has_param_types_or_consts() => {
Position::ReborrowStable(precedence)
},
ty::Adt(..)
| ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Foreign(_)
| ty::Str
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Projection(_) => Position::DerefStable(precedence),
};
}
}
fn ty_contains_field(ty: Ty<'_>, name: Symbol) -> bool {
if let ty::Adt(adt, _) = *ty.kind() {
adt.is_struct() && adt.all_fields().any(|f| f.name == name)
} else {
false
}
}
#[expect(clippy::needless_pass_by_value, clippy::too_many_lines)]
fn report<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, state: State, data: StateData) {
match state {
State::DerefMethod {
ty_changed_count,
is_final_ufcs,
target_mut,
} => {
let mut app = Applicability::MachineApplicable;
let (expr_str, expr_is_macro_call) = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app);
let ty = cx.typeck_results().expr_ty(expr);
let (_, ref_count) = peel_mid_ty_refs(ty);
let deref_str = if ty_changed_count >= ref_count && ref_count != 0 {
// a deref call changing &T -> &U requires two deref operators the first time
// this occurs. One to remove the reference, a second to call the deref impl.
"*".repeat(ty_changed_count + 1)
} else {
"*".repeat(ty_changed_count)
};
let addr_of_str = if ty_changed_count < ref_count {
// Check if a reborrow from &mut T -> &T is required.
if target_mut == Mutability::Not && matches!(ty.kind(), ty::Ref(_, _, Mutability::Mut)) {
"&*"
} else {
""
}
} else if target_mut == Mutability::Mut {
"&mut "
} else {
"&"
};
let expr_str = if !expr_is_macro_call && is_final_ufcs && expr.precedence().order() < PREC_PREFIX {
format!("({})", expr_str)
} else {
expr_str.into_owned()
};
span_lint_and_sugg(
cx,
EXPLICIT_DEREF_METHODS,
data.span,
match target_mut {
Mutability::Not => "explicit `deref` method call",
Mutability::Mut => "explicit `deref_mut` method call",
},
"try this",
format!("{}{}{}", addr_of_str, deref_str, expr_str),
app,
);
},
State::DerefedBorrow(state) => {
let mut app = Applicability::MachineApplicable;
let (snip, snip_is_macro) = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app);
span_lint_hir_and_then(cx, NEEDLESS_BORROW, data.hir_id, data.span, state.msg, |diag| {
let sugg = if !snip_is_macro
&& expr.precedence().order() < data.position.precedence()
&& !has_enclosing_paren(&snip)
{
format!("({})", snip)
} else {
snip.into()
};
diag.span_suggestion(data.span, "change this to", sugg, app);
});
},
State::ExplicitDeref { deref_span_id } => {
let (span, hir_id, precedence) = if let Some((span, hir_id)) = deref_span_id
&& !cx.typeck_results().expr_ty(expr).is_ref()
{
(span, hir_id, PREC_PREFIX)
} else {
(data.span, data.hir_id, data.position.precedence())
};
span_lint_hir_and_then(
cx,
EXPLICIT_AUTO_DEREF,
hir_id,
span,
"deref which would be done by auto-deref",
|diag| {
let mut app = Applicability::MachineApplicable;
let (snip, snip_is_macro) = snippet_with_context(cx, expr.span, span.ctxt(), "..", &mut app);
let sugg =
if !snip_is_macro && expr.precedence().order() < precedence && !has_enclosing_paren(&snip) {
format!("({})", snip)
} else {
snip.into()
};
diag.span_suggestion(span, "try this", sugg, app);
},
);
},
State::ExplicitDerefField { .. } => {
span_lint_hir_and_then(
cx,
EXPLICIT_AUTO_DEREF,
data.hir_id,
data.span,
"deref which would be done by auto-deref",
|diag| {
let mut app = Applicability::MachineApplicable;
let snip = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app).0;
diag.span_suggestion(data.span, "try this", snip.into_owned(), app);
},
);
},
State::Borrow | State::Reborrow { .. } => (),
}
}
impl Dereferencing {
fn check_local_usage<'tcx>(&mut self, cx: &LateContext<'tcx>, e: &Expr<'tcx>, local: HirId) {
if let Some(outer_pat) = self.ref_locals.get_mut(&local) {
if let Some(pat) = outer_pat {
// Check for auto-deref
if !matches!(
cx.typeck_results().expr_adjustments(e),
[
Adjustment {
kind: Adjust::Deref(_),
..
},
Adjustment {
kind: Adjust::Deref(_),
..
},
..
]
) {
match get_parent_expr(cx, e) {
// Field accesses are the same no matter the number of references.
Some(Expr {
kind: ExprKind::Field(..),
..
}) => (),
Some(&Expr {
span,
kind: ExprKind::Unary(UnOp::Deref, _),
..
}) if !span.from_expansion() => {
// Remove explicit deref.
let snip = snippet_with_context(cx, e.span, span.ctxt(), "..", &mut pat.app).0;
pat.replacements.push((span, snip.into()));
},
Some(parent) if !parent.span.from_expansion() => {
// Double reference might be needed at this point.
if parent.precedence().order() == PREC_POSTFIX {
// Parentheses would be needed here, don't lint.
*outer_pat = None;
} else {
pat.always_deref = false;
let snip = snippet_with_context(cx, e.span, parent.span.ctxt(), "..", &mut pat.app).0;
pat.replacements.push((e.span, format!("&{}", snip)));
}
},
_ if !e.span.from_expansion() => {
// Double reference might be needed at this point.
pat.always_deref = false;
let snip = snippet_with_applicability(cx, e.span, "..", &mut pat.app);
pat.replacements.push((e.span, format!("&{}", snip)));
},
// Edge case for macros. The span of the identifier will usually match the context of the
// binding, but not if the identifier was created in a macro. e.g. `concat_idents` and proc
// macros
_ => *outer_pat = None,
}
}
}
}
}
}