use clippy_utils::diagnostics::{span_lint_and_sugg, span_lint_hir_and_then}; use clippy_utils::source::{snippet_with_applicability, snippet_with_context}; use clippy_utils::sugg::has_enclosing_paren; use clippy_utils::ty::{expr_sig, peel_mid_ty_refs, variant_of_res}; use clippy_utils::{get_parent_expr, is_lint_allowed, path_to_local, walk_to_expr_usage}; use rustc_ast::util::parser::{PREC_POSTFIX, PREC_PREFIX}; use rustc_data_structures::fx::FxIndexMap; use rustc_errors::Applicability; use rustc_hir::intravisit::{walk_ty, Visitor}; use rustc_hir::{ self as hir, BindingAnnotation, Body, BodyId, BorrowKind, Expr, ExprKind, GenericArg, HirId, ImplItem, ImplItemKind, Item, ItemKind, Local, MatchSource, Mutability, Node, Pat, PatKind, Path, QPath, TraitItem, TraitItemKind, TyKind, UnOp, }; use rustc_infer::infer::TyCtxtInferExt; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow, AutoBorrowMutability}; use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeckResults}; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::{symbol::sym, Span, Symbol}; use rustc_trait_selection::infer::InferCtxtExt; declare_clippy_lint! { /// ### What it does /// Checks for explicit `deref()` or `deref_mut()` method calls. /// /// ### Why is this bad? /// Dereferencing by `&*x` or `&mut *x` is clearer and more concise, /// when not part of a method chain. /// /// ### Example /// ```rust /// use std::ops::Deref; /// let a: &mut String = &mut String::from("foo"); /// let b: &str = a.deref(); /// ``` /// /// Use instead: /// ```rust /// let a: &mut String = &mut String::from("foo"); /// let b = &*a; /// ``` /// /// This lint excludes: /// ```rust,ignore /// let _ = d.unwrap().deref(); /// ``` #[clippy::version = "1.44.0"] pub EXPLICIT_DEREF_METHODS, pedantic, "Explicit use of deref or deref_mut method while not in a method chain." } declare_clippy_lint! { /// ### What it does /// Checks for address of operations (`&`) that are going to /// be dereferenced immediately by the compiler. /// /// ### Why is this bad? /// Suggests that the receiver of the expression borrows /// the expression. /// /// ### Example /// ```rust /// fn fun(_a: &i32) {} /// /// let x: &i32 = &&&&&&5; /// fun(&x); /// ``` /// /// Use instead: /// ```rust /// # fn fun(_a: &i32) {} /// let x: &i32 = &5; /// fun(x); /// ``` #[clippy::version = "pre 1.29.0"] pub NEEDLESS_BORROW, style, "taking a reference that is going to be automatically dereferenced" } declare_clippy_lint! { /// ### What it does /// Checks for `ref` bindings which create a reference to a reference. /// /// ### Why is this bad? /// The address-of operator at the use site is clearer about the need for a reference. /// /// ### Example /// ```rust /// let x = Some(""); /// if let Some(ref x) = x { /// // use `x` here /// } /// ``` /// /// Use instead: /// ```rust /// let x = Some(""); /// if let Some(x) = x { /// // use `&x` here /// } /// ``` #[clippy::version = "1.54.0"] pub REF_BINDING_TO_REFERENCE, pedantic, "`ref` binding to a reference" } declare_clippy_lint! { /// ### What it does /// Checks for dereferencing expressions which would be covered by auto-deref. /// /// ### Why is this bad? /// This unnecessarily complicates the code. /// /// ### Example /// ```rust /// let x = String::new(); /// let y: &str = &*x; /// ``` /// Use instead: /// ```rust /// let x = String::new(); /// let y: &str = &x; /// ``` #[clippy::version = "1.60.0"] pub EXPLICIT_AUTO_DEREF, complexity, "dereferencing when the compiler would automatically dereference" } impl_lint_pass!(Dereferencing => [ EXPLICIT_DEREF_METHODS, NEEDLESS_BORROW, REF_BINDING_TO_REFERENCE, EXPLICIT_AUTO_DEREF, ]); #[derive(Default)] pub struct Dereferencing { state: Option<(State, StateData)>, // While parsing a `deref` method call in ufcs form, the path to the function is itself an // expression. This is to store the id of that expression so it can be skipped when // `check_expr` is called for it. skip_expr: Option, /// The body the first local was found in. Used to emit lints when the traversal of the body has /// been finished. Note we can't lint at the end of every body as they can be nested within each /// other. current_body: Option, /// The list of locals currently being checked by the lint. /// If the value is `None`, then the binding has been seen as a ref pattern, but is not linted. /// This is needed for or patterns where one of the branches can be linted, but another can not /// be. /// /// e.g. `m!(x) | Foo::Bar(ref x)` ref_locals: FxIndexMap>, } struct StateData { /// Span of the top level expression span: Span, hir_id: HirId, position: Position, } struct DerefedBorrow { count: usize, msg: &'static str, } enum State { // Any number of deref method calls. DerefMethod { // The number of calls in a sequence which changed the referenced type ty_changed_count: usize, is_final_ufcs: bool, /// The required mutability target_mut: Mutability, }, DerefedBorrow(DerefedBorrow), ExplicitDeref { // Span and id of the top-level deref expression if the parent expression is a borrow. deref_span_id: Option<(Span, HirId)>, }, ExplicitDerefField { name: Symbol, }, Reborrow { deref_span: Span, deref_hir_id: HirId, }, Borrow, } // A reference operation considered by this lint pass enum RefOp { Method(Mutability), Deref, AddrOf, } struct RefPat { /// Whether every usage of the binding is dereferenced. always_deref: bool, /// The spans of all the ref bindings for this local. spans: Vec, /// The applicability of this suggestion. app: Applicability, /// All the replacements which need to be made. replacements: Vec<(Span, String)>, /// The [`HirId`] that the lint should be emitted at. hir_id: HirId, } impl<'tcx> LateLintPass<'tcx> for Dereferencing { #[expect(clippy::too_many_lines)] fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) { // Skip path expressions from deref calls. e.g. `Deref::deref(e)` if Some(expr.hir_id) == self.skip_expr.take() { return; } if let Some(local) = path_to_local(expr) { self.check_local_usage(cx, expr, local); } // Stop processing sub expressions when a macro call is seen if expr.span.from_expansion() { if let Some((state, data)) = self.state.take() { report(cx, expr, state, data); } return; } let typeck = cx.typeck_results(); let (kind, sub_expr) = if let Some(x) = try_parse_ref_op(cx.tcx, typeck, expr) { x } else { // The whole chain of reference operations has been seen if let Some((state, data)) = self.state.take() { report(cx, expr, state, data); } return; }; match (self.state.take(), kind) { (None, kind) => { let expr_ty = typeck.expr_ty(expr); let (position, adjustments) = walk_parents(cx, expr); match kind { RefOp::Deref => { if let Position::FieldAccess(name) = position && !ty_contains_field(typeck.expr_ty(sub_expr), name) { self.state = Some(( State::ExplicitDerefField { name }, StateData { span: expr.span, hir_id: expr.hir_id, position }, )); } else if position.is_deref_stable() { self.state = Some(( State::ExplicitDeref { deref_span_id: None }, StateData { span: expr.span, hir_id: expr.hir_id, position }, )); } } RefOp::Method(target_mut) if !is_lint_allowed(cx, EXPLICIT_DEREF_METHODS, expr.hir_id) && position.lint_explicit_deref() => { self.state = Some(( State::DerefMethod { ty_changed_count: if deref_method_same_type(expr_ty, typeck.expr_ty(sub_expr)) { 0 } else { 1 }, is_final_ufcs: matches!(expr.kind, ExprKind::Call(..)), target_mut, }, StateData { span: expr.span, hir_id: expr.hir_id, position }, )); }, RefOp::AddrOf => { // Find the number of times the borrow is auto-derefed. let mut iter = adjustments.iter(); let mut deref_count = 0usize; let next_adjust = loop { match iter.next() { Some(adjust) => { if !matches!(adjust.kind, Adjust::Deref(_)) { break Some(adjust); } else if !adjust.target.is_ref() { deref_count += 1; break iter.next(); } deref_count += 1; }, None => break None, }; }; // Determine the required number of references before any can be removed. In all cases the // reference made by the current expression will be removed. After that there are four cases to // handle. // // 1. Auto-borrow will trigger in the current position, so no further references are required. // 2. Auto-deref ends at a reference, or the underlying type, so one extra needs to be left to // handle the automatically inserted re-borrow. // 3. Auto-deref hits a user-defined `Deref` impl, so at least one reference needs to exist to // start auto-deref. // 4. If the chain of non-user-defined derefs ends with a mutable re-borrow, and re-borrow // adjustments will not be inserted automatically, then leave one further reference to avoid // moving a mutable borrow. // e.g. // fn foo(x: &mut Option<&mut T>, y: &mut T) { // let x = match x { // // Removing the borrow will cause `x` to be moved // Some(x) => &mut *x, // None => y // }; // } let deref_msg = "this expression creates a reference which is immediately dereferenced by the compiler"; let borrow_msg = "this expression borrows a value the compiler would automatically borrow"; let (required_refs, msg) = if position.can_auto_borrow() { (1, if deref_count == 1 { borrow_msg } else { deref_msg }) } else if let Some(&Adjust::Borrow(AutoBorrow::Ref(_, mutability))) = next_adjust.map(|a| &a.kind) { if matches!(mutability, AutoBorrowMutability::Mut { .. }) && !position.is_reborrow_stable() { (3, deref_msg) } else { (2, deref_msg) } } else { (2, deref_msg) }; if deref_count >= required_refs { self.state = Some(( State::DerefedBorrow(DerefedBorrow { // One of the required refs is for the current borrow expression, the remaining ones // can't be removed without breaking the code. See earlier comment. count: deref_count - required_refs, msg, }), StateData { span: expr.span, hir_id: expr.hir_id, position }, )); } else if position.is_deref_stable() { self.state = Some(( State::Borrow, StateData { span: expr.span, hir_id: expr.hir_id, position }, )); } }, RefOp::Method(..) => (), } }, ( Some(( State::DerefMethod { target_mut, ty_changed_count, .. }, data, )), RefOp::Method(_), ) => { self.state = Some(( State::DerefMethod { ty_changed_count: if deref_method_same_type(typeck.expr_ty(expr), typeck.expr_ty(sub_expr)) { ty_changed_count } else { ty_changed_count + 1 }, is_final_ufcs: matches!(expr.kind, ExprKind::Call(..)), target_mut, }, data, )); }, (Some((State::DerefedBorrow(state), data)), RefOp::AddrOf) if state.count != 0 => { self.state = Some(( State::DerefedBorrow(DerefedBorrow { count: state.count - 1, ..state }), data, )); }, (Some((State::DerefedBorrow(state), data)), RefOp::AddrOf) => { let position = data.position; report(cx, expr, State::DerefedBorrow(state), data); if position.is_deref_stable() { self.state = Some(( State::Borrow, StateData { span: expr.span, hir_id: expr.hir_id, position, }, )); } }, (Some((State::DerefedBorrow(state), data)), RefOp::Deref) => { let position = data.position; report(cx, expr, State::DerefedBorrow(state), data); if let Position::FieldAccess(name) = position && !ty_contains_field(typeck.expr_ty(sub_expr), name) { self.state = Some(( State::ExplicitDerefField { name }, StateData { span: expr.span, hir_id: expr.hir_id, position }, )); } else if position.is_deref_stable() { self.state = Some(( State::ExplicitDeref { deref_span_id: None }, StateData { span: expr.span, hir_id: expr.hir_id, position }, )); } }, (Some((State::Borrow, data)), RefOp::Deref) => { if typeck.expr_ty(sub_expr).is_ref() { self.state = Some(( State::Reborrow { deref_span: expr.span, deref_hir_id: expr.hir_id, }, data, )); } else { self.state = Some(( State::ExplicitDeref { deref_span_id: Some((expr.span, expr.hir_id)), }, data, )); } }, ( Some(( State::Reborrow { deref_span, deref_hir_id, }, data, )), RefOp::Deref, ) => { self.state = Some(( State::ExplicitDeref { deref_span_id: Some((deref_span, deref_hir_id)), }, data, )); }, (state @ Some((State::ExplicitDeref { .. }, _)), RefOp::Deref) => { self.state = state; }, (Some((State::ExplicitDerefField { name }, data)), RefOp::Deref) if !ty_contains_field(typeck.expr_ty(sub_expr), name) => { self.state = Some((State::ExplicitDerefField { name }, data)); }, (Some((state, data)), _) => report(cx, expr, state, data), } } fn check_pat(&mut self, cx: &LateContext<'tcx>, pat: &'tcx Pat<'_>) { if let PatKind::Binding(BindingAnnotation::Ref, id, name, _) = pat.kind { if let Some(opt_prev_pat) = self.ref_locals.get_mut(&id) { // This binding id has been seen before. Add this pattern to the list of changes. if let Some(prev_pat) = opt_prev_pat { if pat.span.from_expansion() { // Doesn't match the context of the previous pattern. Can't lint here. *opt_prev_pat = None; } else { prev_pat.spans.push(pat.span); prev_pat.replacements.push(( pat.span, snippet_with_context(cx, name.span, pat.span.ctxt(), "..", &mut prev_pat.app) .0 .into(), )); } } return; } if_chain! { if !pat.span.from_expansion(); if let ty::Ref(_, tam, _) = *cx.typeck_results().pat_ty(pat).kind(); // only lint immutable refs, because borrowed `&mut T` cannot be moved out if let ty::Ref(_, _, Mutability::Not) = *tam.kind(); then { let mut app = Applicability::MachineApplicable; let snip = snippet_with_context(cx, name.span, pat.span.ctxt(), "..", &mut app).0; self.current_body = self.current_body.or(cx.enclosing_body); self.ref_locals.insert( id, Some(RefPat { always_deref: true, spans: vec![pat.span], app, replacements: vec![(pat.span, snip.into())], hir_id: pat.hir_id }), ); } } } } fn check_body_post(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'_>) { if Some(body.id()) == self.current_body { for pat in self.ref_locals.drain(..).filter_map(|(_, x)| x) { let replacements = pat.replacements; let app = pat.app; let lint = if pat.always_deref { NEEDLESS_BORROW } else { REF_BINDING_TO_REFERENCE }; span_lint_hir_and_then( cx, lint, pat.hir_id, pat.spans, "this pattern creates a reference to a reference", |diag| { diag.multipart_suggestion("try this", replacements, app); }, ); } self.current_body = None; } } } fn try_parse_ref_op<'tcx>( tcx: TyCtxt<'tcx>, typeck: &'tcx TypeckResults<'_>, expr: &'tcx Expr<'_>, ) -> Option<(RefOp, &'tcx Expr<'tcx>)> { let (def_id, arg) = match expr.kind { ExprKind::MethodCall(_, [arg], _) => (typeck.type_dependent_def_id(expr.hir_id)?, arg), ExprKind::Call( Expr { kind: ExprKind::Path(path), hir_id, .. }, [arg], ) => (typeck.qpath_res(path, *hir_id).opt_def_id()?, arg), ExprKind::Unary(UnOp::Deref, sub_expr) if !typeck.expr_ty(sub_expr).is_unsafe_ptr() => { return Some((RefOp::Deref, sub_expr)); }, ExprKind::AddrOf(BorrowKind::Ref, _, sub_expr) => return Some((RefOp::AddrOf, sub_expr)), _ => return None, }; if tcx.is_diagnostic_item(sym::deref_method, def_id) { Some((RefOp::Method(Mutability::Not), arg)) } else if tcx.trait_of_item(def_id)? == tcx.lang_items().deref_mut_trait()? { Some((RefOp::Method(Mutability::Mut), arg)) } else { None } } // Checks whether the type for a deref call actually changed the type, not just the mutability of // the reference. fn deref_method_same_type<'tcx>(result_ty: Ty<'tcx>, arg_ty: Ty<'tcx>) -> bool { match (result_ty.kind(), arg_ty.kind()) { (ty::Ref(_, result_ty, _), ty::Ref(_, arg_ty, _)) => result_ty == arg_ty, // The result type for a deref method is always a reference // Not matching the previous pattern means the argument type is not a reference // This means that the type did change _ => false, } } /// The position of an expression relative to it's parent. #[derive(Clone, Copy)] enum Position { MethodReceiver, /// The method is defined on a reference type. e.g. `impl Foo for &T` MethodReceiverRefImpl, Callee, FieldAccess(Symbol), Postfix, Deref, /// Any other location which will trigger auto-deref to a specific time. DerefStable(i8), /// Any other location which will trigger auto-reborrowing. ReborrowStable(i8), Other(i8), } impl Position { fn is_deref_stable(self) -> bool { matches!(self, Self::DerefStable(_)) } fn is_reborrow_stable(self) -> bool { matches!(self, Self::DerefStable(_) | Self::ReborrowStable(_)) } fn can_auto_borrow(self) -> bool { matches!(self, Self::MethodReceiver | Self::FieldAccess(_) | Self::Callee) } fn lint_explicit_deref(self) -> bool { matches!(self, Self::Other(_) | Self::DerefStable(_) | Self::ReborrowStable(_)) } fn precedence(self) -> i8 { match self { Self::MethodReceiver | Self::MethodReceiverRefImpl | Self::Callee | Self::FieldAccess(_) | Self::Postfix => PREC_POSTFIX, Self::Deref => PREC_PREFIX, Self::DerefStable(p) | Self::ReborrowStable(p) | Self::Other(p) => p, } } } /// Walks up the parent expressions attempting to determine both how stable the auto-deref result /// is, and which adjustments will be applied to it. Note this will not consider auto-borrow /// locations as those follow different rules. #[allow(clippy::too_many_lines)] fn walk_parents<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> (Position, &'tcx [Adjustment<'tcx>]) { let mut adjustments = [].as_slice(); let mut precedence = 0i8; let ctxt = e.span.ctxt(); let position = walk_to_expr_usage(cx, e, &mut |parent, child_id| { // LocalTableInContext returns the wrong lifetime, so go use `expr_adjustments` instead. if adjustments.is_empty() && let Node::Expr(e) = cx.tcx.hir().get(child_id) { adjustments = cx.typeck_results().expr_adjustments(e); } match parent { Node::Local(Local { ty: Some(ty), span, .. }) if span.ctxt() == ctxt => { Some(binding_ty_auto_deref_stability(ty, precedence)) }, Node::Item(&Item { kind: ItemKind::Static(..) | ItemKind::Const(..), def_id, span, .. }) | Node::TraitItem(&TraitItem { kind: TraitItemKind::Const(..), def_id, span, .. }) | Node::ImplItem(&ImplItem { kind: ImplItemKind::Const(..), def_id, span, .. }) if span.ctxt() == ctxt => { let ty = cx.tcx.type_of(def_id); Some(if ty.is_ref() { Position::DerefStable(precedence) } else { Position::Other(precedence) }) }, Node::Item(&Item { kind: ItemKind::Fn(..), def_id, span, .. }) | Node::TraitItem(&TraitItem { kind: TraitItemKind::Fn(..), def_id, span, .. }) | Node::ImplItem(&ImplItem { kind: ImplItemKind::Fn(..), def_id, span, .. }) if span.ctxt() == ctxt => { let output = cx.tcx.fn_sig(def_id.to_def_id()).skip_binder().output(); Some(if !output.is_ref() { Position::Other(precedence) } else if output.has_placeholders() || output.has_opaque_types() { Position::ReborrowStable(precedence) } else { Position::DerefStable(precedence) }) }, Node::Expr(parent) if parent.span.ctxt() == ctxt => match parent.kind { ExprKind::Ret(_) => { let output = cx .tcx .fn_sig(cx.tcx.hir().body_owner_def_id(cx.enclosing_body.unwrap())) .skip_binder() .output(); Some(if !output.is_ref() { Position::Other(precedence) } else if output.has_placeholders() || output.has_opaque_types() { Position::ReborrowStable(precedence) } else { Position::DerefStable(precedence) }) }, ExprKind::Call(func, _) if func.hir_id == child_id => (child_id == e.hir_id).then(|| Position::Callee), ExprKind::Call(func, args) => args .iter() .position(|arg| arg.hir_id == child_id) .zip(expr_sig(cx, func)) .and_then(|(i, sig)| sig.input_with_hir(i)) .map(|(hir_ty, ty)| match hir_ty { // Type inference for closures can depend on how they're called. Only go by the explicit // types here. Some(ty) => binding_ty_auto_deref_stability(ty, precedence), None => param_auto_deref_stability(ty.skip_binder(), precedence), }), ExprKind::MethodCall(_, args, _) => { let id = cx.typeck_results().type_dependent_def_id(parent.hir_id).unwrap(); args.iter().position(|arg| arg.hir_id == child_id).map(|i| { if i == 0 { // Check for calls to trait methods where the trait is implemented on a reference. // Two cases need to be handled: // * `self` methods on `&T` will never have auto-borrow // * `&self` methods on `&T` can have auto-borrow, but `&self` methods on `T` will take // priority. if e.hir_id != child_id { Position::ReborrowStable(precedence) } else if let Some(trait_id) = cx.tcx.trait_of_item(id) && let arg_ty = cx.tcx.erase_regions(cx.typeck_results().expr_ty_adjusted(e)) && let ty::Ref(_, sub_ty, _) = *arg_ty.kind() && let subs = cx.typeck_results().node_substs_opt(child_id).unwrap_or_else( || cx.tcx.mk_substs([].iter()) ) && let impl_ty = if cx.tcx.fn_sig(id).skip_binder().inputs()[0].is_ref() { // Trait methods taking `&self` sub_ty } else { // Trait methods taking `self` arg_ty } && impl_ty.is_ref() && cx.tcx.infer_ctxt().enter(|infcx| infcx .type_implements_trait(trait_id, impl_ty, subs, cx.param_env) .must_apply_modulo_regions() ) { Position::MethodReceiverRefImpl } else { Position::MethodReceiver } } else { param_auto_deref_stability(cx.tcx.fn_sig(id).skip_binder().inputs()[i], precedence) } }) }, ExprKind::Struct(path, fields, _) => { let variant = variant_of_res(cx, cx.qpath_res(path, parent.hir_id)); fields .iter() .find(|f| f.expr.hir_id == child_id) .zip(variant) .and_then(|(field, variant)| variant.fields.iter().find(|f| f.name == field.ident.name)) .map(|field| param_auto_deref_stability(cx.tcx.type_of(field.did), precedence)) }, ExprKind::Field(child, name) if child.hir_id == e.hir_id => Some(Position::FieldAccess(name.name)), ExprKind::Unary(UnOp::Deref, child) if child.hir_id == e.hir_id => Some(Position::Deref), ExprKind::Match(child, _, MatchSource::TryDesugar | MatchSource::AwaitDesugar) | ExprKind::Index(child, _) if child.hir_id == e.hir_id => { Some(Position::Postfix) }, _ if child_id == e.hir_id => { precedence = parent.precedence().order(); None }, _ => None, }, _ => None, } }) .unwrap_or(Position::Other(precedence)); (position, adjustments) } // Checks the stability of auto-deref when assigned to a binding with the given explicit type. // // e.g. // let x = Box::new(Box::new(0u32)); // let y1: &Box<_> = x.deref(); // let y2: &Box<_> = &x; // // Here `y1` and `y2` would resolve to different types, so the type `&Box<_>` is not stable when // switching to auto-dereferencing. fn binding_ty_auto_deref_stability(ty: &hir::Ty<'_>, precedence: i8) -> Position { let TyKind::Rptr(_, ty) = &ty.kind else { return Position::Other(precedence); }; let mut ty = ty; loop { break match ty.ty.kind { TyKind::Rptr(_, ref ref_ty) => { ty = ref_ty; continue; }, TyKind::Path( QPath::TypeRelative(_, path) | QPath::Resolved( _, Path { segments: [.., path], .. }, ), ) => { if let Some(args) = path.args && args.args.iter().any(|arg| match arg { GenericArg::Infer(_) => true, GenericArg::Type(ty) => ty_contains_infer(ty), _ => false, }) { Position::ReborrowStable(precedence) } else { Position::DerefStable(precedence) } }, TyKind::Slice(_) | TyKind::Array(..) | TyKind::BareFn(_) | TyKind::Never | TyKind::Tup(_) | TyKind::Ptr(_) | TyKind::TraitObject(..) | TyKind::Path(_) => Position::DerefStable(precedence), TyKind::OpaqueDef(..) | TyKind::Infer | TyKind::Typeof(..) | TyKind::Err => Position::ReborrowStable(precedence), }; } } // Checks whether a type is inferred at some point. // e.g. `_`, `Box<_>`, `[_]` fn ty_contains_infer(ty: &hir::Ty<'_>) -> bool { struct V(bool); impl Visitor<'_> for V { fn visit_ty(&mut self, ty: &hir::Ty<'_>) { if self.0 || matches!( ty.kind, TyKind::OpaqueDef(..) | TyKind::Infer | TyKind::Typeof(_) | TyKind::Err ) { self.0 = true; } else { walk_ty(self, ty); } } fn visit_generic_arg(&mut self, arg: &GenericArg<'_>) { if self.0 || matches!(arg, GenericArg::Infer(_)) { self.0 = true; } else if let GenericArg::Type(ty) = arg { self.visit_ty(ty); } } } let mut v = V(false); v.visit_ty(ty); v.0 } // Checks whether a type is stable when switching to auto dereferencing, fn param_auto_deref_stability(ty: Ty<'_>, precedence: i8) -> Position { let ty::Ref(_, mut ty, _) = *ty.kind() else { return Position::Other(precedence); }; loop { break match *ty.kind() { ty::Ref(_, ref_ty, _) => { ty = ref_ty; continue; }, ty::Infer(_) | ty::Error(_) | ty::Param(_) | ty::Bound(..) | ty::Opaque(..) | ty::Placeholder(_) | ty::Dynamic(..) => Position::ReborrowStable(precedence), ty::Adt(..) if ty.has_placeholders() || ty.has_param_types_or_consts() => { Position::ReborrowStable(precedence) }, ty::Adt(..) | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Foreign(_) | ty::Str | ty::Array(..) | ty::Slice(..) | ty::RawPtr(..) | ty::FnDef(..) | ty::FnPtr(_) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) | ty::Never | ty::Tuple(_) | ty::Projection(_) => Position::DerefStable(precedence), }; } } fn ty_contains_field(ty: Ty<'_>, name: Symbol) -> bool { if let ty::Adt(adt, _) = *ty.kind() { adt.is_struct() && adt.all_fields().any(|f| f.name == name) } else { false } } #[expect(clippy::needless_pass_by_value, clippy::too_many_lines)] fn report<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>, state: State, data: StateData) { match state { State::DerefMethod { ty_changed_count, is_final_ufcs, target_mut, } => { let mut app = Applicability::MachineApplicable; let (expr_str, expr_is_macro_call) = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app); let ty = cx.typeck_results().expr_ty(expr); let (_, ref_count) = peel_mid_ty_refs(ty); let deref_str = if ty_changed_count >= ref_count && ref_count != 0 { // a deref call changing &T -> &U requires two deref operators the first time // this occurs. One to remove the reference, a second to call the deref impl. "*".repeat(ty_changed_count + 1) } else { "*".repeat(ty_changed_count) }; let addr_of_str = if ty_changed_count < ref_count { // Check if a reborrow from &mut T -> &T is required. if target_mut == Mutability::Not && matches!(ty.kind(), ty::Ref(_, _, Mutability::Mut)) { "&*" } else { "" } } else if target_mut == Mutability::Mut { "&mut " } else { "&" }; let expr_str = if !expr_is_macro_call && is_final_ufcs && expr.precedence().order() < PREC_PREFIX { format!("({})", expr_str) } else { expr_str.into_owned() }; span_lint_and_sugg( cx, EXPLICIT_DEREF_METHODS, data.span, match target_mut { Mutability::Not => "explicit `deref` method call", Mutability::Mut => "explicit `deref_mut` method call", }, "try this", format!("{}{}{}", addr_of_str, deref_str, expr_str), app, ); }, State::DerefedBorrow(state) => { let mut app = Applicability::MachineApplicable; let (snip, snip_is_macro) = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app); span_lint_hir_and_then(cx, NEEDLESS_BORROW, data.hir_id, data.span, state.msg, |diag| { let sugg = if !snip_is_macro && expr.precedence().order() < data.position.precedence() && !has_enclosing_paren(&snip) { format!("({})", snip) } else { snip.into() }; diag.span_suggestion(data.span, "change this to", sugg, app); }); }, State::ExplicitDeref { deref_span_id } => { let (span, hir_id, precedence) = if let Some((span, hir_id)) = deref_span_id && !cx.typeck_results().expr_ty(expr).is_ref() { (span, hir_id, PREC_PREFIX) } else { (data.span, data.hir_id, data.position.precedence()) }; span_lint_hir_and_then( cx, EXPLICIT_AUTO_DEREF, hir_id, span, "deref which would be done by auto-deref", |diag| { let mut app = Applicability::MachineApplicable; let (snip, snip_is_macro) = snippet_with_context(cx, expr.span, span.ctxt(), "..", &mut app); let sugg = if !snip_is_macro && expr.precedence().order() < precedence && !has_enclosing_paren(&snip) { format!("({})", snip) } else { snip.into() }; diag.span_suggestion(span, "try this", sugg, app); }, ); }, State::ExplicitDerefField { .. } => { span_lint_hir_and_then( cx, EXPLICIT_AUTO_DEREF, data.hir_id, data.span, "deref which would be done by auto-deref", |diag| { let mut app = Applicability::MachineApplicable; let snip = snippet_with_context(cx, expr.span, data.span.ctxt(), "..", &mut app).0; diag.span_suggestion(data.span, "try this", snip.into_owned(), app); }, ); }, State::Borrow | State::Reborrow { .. } => (), } } impl Dereferencing { fn check_local_usage<'tcx>(&mut self, cx: &LateContext<'tcx>, e: &Expr<'tcx>, local: HirId) { if let Some(outer_pat) = self.ref_locals.get_mut(&local) { if let Some(pat) = outer_pat { // Check for auto-deref if !matches!( cx.typeck_results().expr_adjustments(e), [ Adjustment { kind: Adjust::Deref(_), .. }, Adjustment { kind: Adjust::Deref(_), .. }, .. ] ) { match get_parent_expr(cx, e) { // Field accesses are the same no matter the number of references. Some(Expr { kind: ExprKind::Field(..), .. }) => (), Some(&Expr { span, kind: ExprKind::Unary(UnOp::Deref, _), .. }) if !span.from_expansion() => { // Remove explicit deref. let snip = snippet_with_context(cx, e.span, span.ctxt(), "..", &mut pat.app).0; pat.replacements.push((span, snip.into())); }, Some(parent) if !parent.span.from_expansion() => { // Double reference might be needed at this point. if parent.precedence().order() == PREC_POSTFIX { // Parentheses would be needed here, don't lint. *outer_pat = None; } else { pat.always_deref = false; let snip = snippet_with_context(cx, e.span, parent.span.ctxt(), "..", &mut pat.app).0; pat.replacements.push((e.span, format!("&{}", snip))); } }, _ if !e.span.from_expansion() => { // Double reference might be needed at this point. pat.always_deref = false; let snip = snippet_with_applicability(cx, e.span, "..", &mut pat.app); pat.replacements.push((e.span, format!("&{}", snip))); }, // Edge case for macros. The span of the identifier will usually match the context of the // binding, but not if the identifier was created in a macro. e.g. `concat_idents` and proc // macros _ => *outer_pat = None, } } } } } }