Specifically, change `Ty` from this: ``` pub type Ty<'tcx> = &'tcx TyS<'tcx>; ``` to this ``` pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>); ``` There are two benefits to this. - It's now a first class type, so we can define methods on it. This means we can move a lot of methods away from `TyS`, leaving `TyS` as a barely-used type, which is appropriate given that it's not meant to be used directly. - The uniqueness requirement is now explicit, via the `Interned` type. E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather than via `TyS`, which wasn't obvious at all. Much of this commit is boring churn. The interesting changes are in these files: - compiler/rustc_middle/src/arena.rs - compiler/rustc_middle/src/mir/visit.rs - compiler/rustc_middle/src/ty/context.rs - compiler/rustc_middle/src/ty/mod.rs Specifically: - Most mentions of `TyS` are removed. It's very much a dumb struct now; `Ty` has all the smarts. - `TyS` now has `crate` visibility instead of `pub`. - `TyS::make_for_test` is removed in favour of the static `BOOL_TY`, which just works better with the new structure. - The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned` (pointer-based, for the `Equal` case) and partly on `TyS` (contents-based, for the other cases). - There are many tedious sigil adjustments, i.e. adding or removing `*` or `&`. They seem to be unavoidable.
11 KiB
Common tools for writing lints
You may need following tooltips to catch up with common operations.
Useful Rustc dev guide links:
Retrieving the type of an expression
Sometimes you may want to retrieve the type Ty
of an expression Expr
, for example to answer following questions:
- which type does this expression correspond to (using its
TyKind
)? - is it a sized type?
- is it a primitive type?
- does it implement a trait?
This operation is performed using the expr_ty()
method from the TypeckResults
struct,
that gives you access to the underlying structure Ty
.
Example of use:
impl LateLintPass<'_> for MyStructLint {
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
// Get type of `expr`
let ty = cx.typeck_results().expr_ty(expr);
// Match its kind to enter its type
match ty.kind {
ty::Adt(adt_def, _) if adt_def.is_struct() => println!("Our `expr` is a struct!"),
_ => ()
}
}
}
Similarly in TypeckResults
methods, you have the pat_ty()
method
to retrieve a type from a pattern.
Two noticeable items here:
cx
is the lint contextLateContext
. The two most useful data structures in this context aretcx
and theTypeckResults
returned byLateContext::typeck_results
, allowing us to jump to type definitions and other compilation stages such as HIR.typeck_results
's return value isTypeckResults
and is created by type checking step, it includes useful information such as types of expressions, ways to resolve methods and so on.
Checking if an expr is calling a specific method
Starting with an expr
, you can check whether it is calling a specific method some_method
:
impl<'tcx> LateLintPass<'tcx> for MyStructLint {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'_>) {
if_chain! {
// Check our expr is calling a method
if let hir::ExprKind::MethodCall(path, _, [_self_arg, ..]) = &expr.kind;
// Check the name of this method is `some_method`
if path.ident.name == sym!(some_method);
// Optionally, check the type of the self argument.
// - See "Checking for a specific type"
then {
// ...
}
}
}
}
Checking for a specific type
There are three ways to check if an expression type is a specific type we want to check for. All of these methods only check for the base type, generic arguments have to be checked separately.
use clippy_utils::ty::{is_type_diagnostic_item, is_type_lang_item};
use clippy_utils::{paths, match_def_path};
use rustc_span::symbol::sym;
use rustc_hir::LangItem;
impl LateLintPass<'_> for MyStructLint {
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
// Getting the expression type
let ty = cx.typeck_results().expr_ty(expr);
// 1. Using diagnostic items
// The last argument is the diagnostic item to check for
if is_type_diagnostic_item(cx, ty, sym::Option) {
// The type is an `Option`
}
// 2. Using lang items
if is_type_lang_item(cx, ty, LangItem::RangeFull) {
// The type is a full range like `.drain(..)`
}
// 3. Using the type path
// This method should be avoided if possible
if match_def_path(cx, def_id, &paths::RESULT) {
// The type is a `core::result::Result`
}
}
}
Prefer using diagnostic items and lang items where possible.
Checking if a type implements a specific trait
There are three ways to do this, depending on if the target trait has a diagnostic item, lang item or neither.
use clippy_utils::{implements_trait, is_trait_method, match_trait_method, paths};
use rustc_span::symbol::sym;
impl LateLintPass<'_> for MyStructLint {
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
// 1. Using diagnostic items with the expression
// we use `is_trait_method` function from Clippy's utils
if is_trait_method(cx, expr, sym::Iterator) {
// method call in `expr` belongs to `Iterator` trait
}
// 2. Using lang items with the expression type
let ty = cx.typeck_results().expr_ty(expr);
if cx.tcx.lang_items()
// we are looking for the `DefId` of `Drop` trait in lang items
.drop_trait()
// then we use it with our type `ty` by calling `implements_trait` from Clippy's utils
.map_or(false, |id| implements_trait(cx, ty, id, &[])) {
// `expr` implements `Drop` trait
}
// 3. Using the type path with the expression
// we use `match_trait_method` function from Clippy's utils
// (This method should be avoided if possible)
if match_trait_method(cx, expr, &paths::INTO) {
// `expr` implements `Into` trait
}
}
}
Prefer using diagnostic and lang items, if the target trait has one.
We access lang items through the type context tcx
. tcx
is of type TyCtxt
and is defined in the rustc_middle
crate.
A list of defined paths for Clippy can be found in paths.rs
Checking if a type defines a specific method
To check if our type defines a method called some_method
:
use clippy_utils::{is_type_diagnostic_item, return_ty};
impl<'tcx> LateLintPass<'tcx> for MyTypeImpl {
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) {
if_chain! {
// Check if item is a method/function
if let ImplItemKind::Fn(ref signature, _) = impl_item.kind;
// Check the method is named `some_method`
if impl_item.ident.name == sym!(some_method);
// We can also check it has a parameter `self`
if signature.decl.implicit_self.has_implicit_self();
// We can go further and even check if its return type is `String`
if is_type_diagnostic_item(cx, return_ty(cx, impl_item.hir_id), sym!(string_type));
then {
// ...
}
}
}
}
Dealing with macros and expansions
Keep in mind that macros are already expanded and desugaring is already applied to the code representation that you are working with in Clippy. This unfortunately causes a lot of false positives because macro expansions are "invisible" unless you actively check for them. Generally speaking, code with macro expansions should just be ignored by Clippy because that code can be dynamic in ways that are difficult or impossible to see. Use the following functions to deal with macros:
-
span.from_expansion()
: detects if a span is from macro expansion or desugaring. Checking this is a common first step in a lint.if expr.span.from_expansion() { // just forget it return; }
-
span.ctxt()
: the span's context represents whether it is from expansion, and if so, which macro call expanded it. It is sometimes useful to check if the context of two spans are equal.// expands to `1 + 0`, but don't lint 1 + mac!()
if left.span.ctxt() != right.span.ctxt() { // the coder most likely cannot modify this expression return; }
Note: Code that is not from expansion is in the "root" context. So any spans where
from_expansion
returnstrue
can be assumed to have the same context. And so just usingspan.from_expansion()
is often good enough. -
in_external_macro(span)
: detect if the given span is from a macro defined in a foreign crate. If you want the lint to work with macro-generated code, this is the next line of defense to avoid macros not defined in the current crate. It doesn't make sense to lint code that the coder can't change.You may want to use it for example to not start linting in macros from other crates
#[macro_use] extern crate a_crate_with_macros; // `foo` is defined in `a_crate_with_macros` foo!("bar"); // if we lint the `match` of `foo` call and test its span assert_eq!(in_external_macro(cx.sess(), match_span), true);
-
span.ctxt()
: the span's context represents whether it is from expansion, and if so, what expanded it
One thing SpanContext
is useful for is to check if two spans are in the same context. For example,
in a == b
, a
and b
have the same context. In a macro_rules!
with a == $b
, $b
is expanded to some
expression with a different context from a
.
macro_rules! m {
($a:expr, $b:expr) => {
if $a.is_some() {
$b;
}
}
}
let x: Option<u32> = Some(42);
m!(x, x.unwrap());
// These spans are not from the same context
// x.is_some() is from inside the macro
// x.unwrap() is from outside the macro
assert_eq!(x_is_some_span.ctxt(), x_unwrap_span.ctxt());