The bug was dues to the constant bytes being compared instead of their
values. This meant that negative values were being treated as larger
than some positive values.
Fixes#7829
avoid `eq_op` in test code
Add a check to `eq_op` that will avoid linting in functions annotated with `#[test]`
---
*Please write a short comment explaining your change (or "none" for internal only changes)*
changelog: avoid `eq_op` in test functions
Some "parenthesis" and "parentheses" fixes
"Parenthesis" is the singular (e.g. one `(` or one `)`) and "parentheses" is the plural (multiple `(` or `)`s) and this is not hard to mix up so here are some fixes for that.
Inspired by #89958
Add `format_in_format_args` and `to_string_in_format_args` lints
Fixes#7667 and #7729
I put these in `perf` since that was one of `@jplatte's` suggestions, and `redundant_clone` (which I consider to be similar) lives there as well.
However, I am open to changing the category or anything else.
r? `@camsteffen`
changelog: Add `format_in_format_args` and `to_string_in_format_args` lints
Do not expand macros in equatable_if_let suggestion
Fixes#7781
Let's use Hacktoberfest as a motivation to start contributing PRs myself again :)
changelog: [`equatable_if_let`]: No longer expands macros in the suggestion
Allow giving reasons for `disallowed_types`
Similar to #7609 but for the `disallowed_type` lint. The permitted form of configuration is the same as for `disallowed_methods`.
changelog: Allow giving reasons for [`disallowed_type`]
Fix FP in external macros for `mut_mut` lint
Fix FP in `mut_mut` lint when type is defined in external macros.
fixes: #6922
changelog: [`mut_mut`] Fix FP when type is defined in external macros
Refactor `clippy::match_ref_pats` to check for multiple reference patterns
fixes#7740
When there is only one pattern, to begin with, i.e. a single deref(`&`), then in such cases we suppress `clippy::match_ref_pats`.
This is done by checking the count of the reference pattern and emitting `clippy::match_ref_pats` when more than one pattern is present.
Removed certain errors in the `stderr` tests as they would not be triggered.
changelog: Refactor `clippy::match_ref_pats` to check for multiple reference patterns
Before this lint didn't trigger on macros. With rust-lang/rust#88175
this isn't enough anymore. In this PR a `WhileLoop` desugaring kind was
introduced. This overrides the span of expanded expressions when
lowering the while loop. So if a while loop is in a macro, the
expressions that it expands to are no longer marked with
`ExpnKind::Macro`, but with `ExpnKind::Desugaring`. In general, this is
the correct behavior and the same that is done for `ForLoop`s. It just
tripped up this lint.
Restriction lint for function pointer casts
The existing lints for function pointer casts cover the cases where a cast is non-portable or would result in truncation, however there's currently no way to forbid numeric function pointer casts entirely.
I've added a new lint `fn_to_numeric_cast_any`, which allows one to ban _all_ numeric function pointer casts, including to `usize`. This is useful if you're writing high-level Rust and want to opt-out of potentially surprising behaviour, avoiding silent bugs from forgotten parentheses, e.g.
```rust
fn foo() -> u32 {
10
}
fn main() {
let _ = foo as usize; // oops, forgot to call foo and got a random address instead!
}
```
~~I'm open to suggestions for the naming of the lint, because `fn_to_numeric_cast_any` is a bit clunky. Ideally I'd call this lint `fn_to_numeric_cast`, but that name is already taken for the more specific lint~~. We've stuck with `fn_to_numeric_cast_any` to avoid renaming the existing lint, or choosing a different name that's too generic (like `fn_cast`).
I'm also open to changing the suggestion behaviour, as adding parentheses is only one of many possible ways to fix the lint.
changelog: add ``[`fn_to_numeric_cast_any`]`` restriction lint
Make `shadow_reuse` suggestion less verbose
Closes#7764
Make `shadow_reuse` suggestion less verbose.
changelog: [`shadow_reuse`] does not warn shadowing statement
fix bug for large_enum_variants
Fix the discussion problem in the issue of https://github.com/rust-lang/rust-clippy/issues/7666#issuecomment-919654291
About the false positive problem of case:
```rust
enum LargeEnum6 {
A,
B([u8;255]),
C([u8;200]),
}
```
changelog: Fix largest_enum_variant wrongly identifying the second largest variant.
Rustup
This needs a review this time. Especially 521bf8f0fa cc `@camsteffen` I think this is necessary now, because `itertools` is no longer a dependency of `clippy_utils` and therefore this path can't be found 🤔
( I forgot about the sync last week. I should get to document this process better, so other people can do it when I'm not around )
changelog: none
bump clippy crates to edition 2021
Also helps with dogfooding edition 2021 a bit. :)
Tests passed locally.
---
changelog: bump edition from 2018 to 2021
Demote float_cmp to pedantic
See this issue: https://github.com/rust-lang/rust-clippy/issues/7666
This is one of the most frequently suppressed lints. It is deny-by-default. It is not actually clearly wrong, as there are many instances where direct float comparison is actually desirable. It is only after operating on floats that they may lose precision, and that depends greatly on the operation. As most correctness lints have a much higher standard of error, being based on hard and fast binary logic, this should not be amongst them.
A linter is not a substitute for observing the math carefully and running tests, and doing the desirable thing is even more likely to lead one to want exact comparisons.
changelog: Demote [`float_cmp`] from correctness to pedantic lints
Be explicit about using Binder::dummy
This is somewhat of a late followup to the binder refactor PR. It removes `ToPredicate` and `ToPolyTraitImpls` that hide the use of `Binder::dummy`. While this does make code a bit more verbose, it allows us be more careful about where we create binders.
Another alternative here might be to add a new trait `ToBinder` or something with a `dummy()` fn. Which could still allow grepping but allows doing something like `trait_ref.dummy()` (but I also wonder if longer-term, it would be better to be even more explicit with a `bind_with_vars(ty::List::empty())` *but* that's not clear yet.
r? ``@nikomatsakis``
Don't lint `suspicious_else_formatting` inside proc-macros
fixes: #7650
I'll add a test for this one soon.
changelog: Don't lint `suspicious_else_formatting` inside proc-macros
Expand box_vec lint to box_collection
fixed#7451
changelog: Expand `box_vec` into [`box_collection`], and have it error on all sorts of boxed collections
Change `while_let_on_iterator` suggestion to use `by_ref()`
It came up in the discussion #7659 that suggesting `iter.by_ref()` is a clearer suggestion than `&mut iter`. I personally think they're equivalent, but if `by_ref()` is clearer to people then that should be the suggestion.
changelog: Change `while_let_on_iterator` suggestion when using `&mut` to use `by_ref()`
New lint: `same_name_method`
changelog: ``[`same_name_method`]``
fix: https://github.com/rust-lang/rust-clippy/issues/7632
It only compares a method in `impl` with another in `impl trait for`
It doesn't lint two methods in two traits.
I'm not sure my approach is the best way. I meet difficulty in other approaches.
Fix various redundant_closure bugs
changelog: Fix various false negatives and false positives for [`redundant_closure`]
Closes#3071Closes#4002
This lint is full of weird nuances and this is basically a re-write to tighten up the logic.
Encode spans relative to the enclosing item
The aim of this PR is to avoid recomputing queries when code is moved without modification.
MCP at https://github.com/rust-lang/compiler-team/issues/443
This is achieved by :
1. storing the HIR owner LocalDefId information inside the span;
2. encoding and decoding spans relative to the enclosing item in the incremental on-disk cache;
3. marking a dependency to the `source_span(LocalDefId)` query when we translate a span from the short (`Span`) representation to its explicit (`SpanData`) representation.
Since all client code uses `Span`, step 3 ensures that all manipulations
of span byte positions actually create the dependency edge between
the caller and the `source_span(LocalDefId)`.
This query return the actual absolute span of the parent item.
As a consequence, any source code motion that changes the absolute byte position of a node will either:
- modify the distance to the parent's beginning, so change the relative span's hash;
- dirty `source_span`, and trigger the incremental recomputation of all code that
depends on the span's absolute byte position.
With this scheme, I believe the dependency tracking to be accurate.
For the moment, the spans are marked during lowering.
I'd rather do this during def-collection,
but the AST MutVisitor is not practical enough just yet.
The only difference is that we attach macro-expanded spans
to their expansion point instead of the macro itself.
Fix result order for `manual_split_once` when `rsplitn` is used
fixes: #7656
changelog: Fix result order for `manual_split_once` when `rsplitn` is used
rustc: use more correct span data in for loop desugaring
Fixes#82462
Before:
help: consider adding semicolon after the expression so its temporaries are dropped sooner, before the local variables declared by the block are dropped
|
LL | for x in DroppingSlice(&*v).iter(); {
| +
After:
help: consider adding semicolon after the expression so its temporaries are dropped sooner, before the local variables declared by the block are dropped
|
LL | };
| +
This seems like a reasonable fix: since the desugared "expr_drop_temps_mut" contains the entire desugared loop construct, its span should contain the entire loop construct as well.
Add new lint `iter_not_returning_iterator`
Add new lint [`iter_not_returning_iterator`] to detect method `iter()` or `iter_mut()` returning a type not implementing `Iterator`
changelog: Add new lint [`iter_not_returning_iterator`]
Avoid slice indexing in Clippy (down with the ICEs)
While working on #7569 I got about 23 lint reports where we can avoid slice indexing by destructing the slice early. This is a preparation PR to avoid fixing them in the lint PR. (The implementation already takes about 300 lines without tests 😅). Either way, this should hopefully be easy to review 🙃
---
changelog: none
Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`