rust-clippy/clippy_lints/src/matches/match_same_arms.rs

420 lines
18 KiB
Rust
Raw Normal View History

use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::source::snippet;
use clippy_utils::{path_to_local, search_same, SpanlessEq, SpanlessHash};
use core::cmp::Ordering;
use core::iter;
use core::slice;
use rustc_arena::DroplessArena;
use rustc_ast::ast::LitKind;
use rustc_errors::Applicability;
use rustc_hir::def_id::DefId;
use rustc_hir::{Arm, Expr, ExprKind, HirId, HirIdMap, HirIdSet, Pat, PatKind, RangeEnd};
use rustc_lint::LateContext;
use rustc_middle::ty;
use rustc_span::Symbol;
use std::collections::hash_map::Entry;
use super::MATCH_SAME_ARMS;
#[expect(clippy::too_many_lines)]
pub(super) fn check<'tcx>(cx: &LateContext<'tcx>, arms: &'tcx [Arm<'_>]) {
let hash = |&(_, arm): &(usize, &Arm<'_>)| -> u64 {
let mut h = SpanlessHash::new(cx);
h.hash_expr(arm.body);
h.finish()
};
let arena = DroplessArena::default();
let normalized_pats: Vec<_> = arms
.iter()
.map(|a| NormalizedPat::from_pat(cx, &arena, a.pat))
.collect();
// The furthest forwards a pattern can move without semantic changes
let forwards_blocking_idxs: Vec<_> = normalized_pats
.iter()
.enumerate()
.map(|(i, pat)| {
normalized_pats[i + 1..]
.iter()
.enumerate()
.find_map(|(j, other)| pat.has_overlapping_values(other).then(|| i + 1 + j))
.unwrap_or(normalized_pats.len())
})
.collect();
// The furthest backwards a pattern can move without semantic changes
let backwards_blocking_idxs: Vec<_> = normalized_pats
.iter()
.enumerate()
.map(|(i, pat)| {
normalized_pats[..i]
.iter()
.enumerate()
.rev()
.zip(forwards_blocking_idxs[..i].iter().copied().rev())
.skip_while(|&(_, forward_block)| forward_block > i)
.find_map(|((j, other), forward_block)| {
(forward_block == i || pat.has_overlapping_values(other)).then(|| j)
})
.unwrap_or(0)
})
.collect();
let eq = |&(lindex, lhs): &(usize, &Arm<'_>), &(rindex, rhs): &(usize, &Arm<'_>)| -> bool {
let min_index = usize::min(lindex, rindex);
let max_index = usize::max(lindex, rindex);
let mut local_map: HirIdMap<HirId> = HirIdMap::default();
let eq_fallback = |a: &Expr<'_>, b: &Expr<'_>| {
if_chain! {
if let Some(a_id) = path_to_local(a);
if let Some(b_id) = path_to_local(b);
let entry = match local_map.entry(a_id) {
Entry::Vacant(entry) => entry,
// check if using the same bindings as before
Entry::Occupied(entry) => return *entry.get() == b_id,
};
// the names technically don't have to match; this makes the lint more conservative
if cx.tcx.hir().name(a_id) == cx.tcx.hir().name(b_id);
if cx.typeck_results().expr_ty(a) == cx.typeck_results().expr_ty(b);
if pat_contains_local(lhs.pat, a_id);
if pat_contains_local(rhs.pat, b_id);
then {
entry.insert(b_id);
true
} else {
false
}
}
};
// Arms with a guard are ignored, those cant always be merged together
// If both arms overlap with an arm in between then these can't be merged either.
!(backwards_blocking_idxs[max_index] > min_index && forwards_blocking_idxs[min_index] < max_index)
&& lhs.guard.is_none()
&& rhs.guard.is_none()
&& SpanlessEq::new(cx)
.expr_fallback(eq_fallback)
.eq_expr(lhs.body, rhs.body)
// these checks could be removed to allow unused bindings
&& bindings_eq(lhs.pat, local_map.keys().copied().collect())
&& bindings_eq(rhs.pat, local_map.values().copied().collect())
};
let indexed_arms: Vec<(usize, &Arm<'_>)> = arms.iter().enumerate().collect();
for (&(i, arm1), &(j, arm2)) in search_same(&indexed_arms, hash, eq) {
if matches!(arm2.pat.kind, PatKind::Wild) {
span_lint_and_then(
cx,
MATCH_SAME_ARMS,
arm1.span,
"this match arm has an identical body to the `_` wildcard arm",
|diag| {
diag.span_suggestion(
arm1.span,
"try removing the arm",
"",
Applicability::MaybeIncorrect,
)
.help("or try changing either arm body")
.span_note(arm2.span, "`_` wildcard arm here");
},
);
} else {
let back_block = backwards_blocking_idxs[j];
let (keep_arm, move_arm) = if back_block < i || (back_block == 0 && forwards_blocking_idxs[i] <= j) {
(arm1, arm2)
} else {
(arm2, arm1)
};
span_lint_and_then(
cx,
MATCH_SAME_ARMS,
keep_arm.span,
"this match arm has an identical body to another arm",
|diag| {
let move_pat_snip = snippet(cx, move_arm.pat.span, "<pat2>");
let keep_pat_snip = snippet(cx, keep_arm.pat.span, "<pat1>");
diag.span_suggestion(
keep_arm.pat.span,
"try merging the arm patterns",
format!("{} | {}", keep_pat_snip, move_pat_snip),
Applicability::MaybeIncorrect,
)
.help("or try changing either arm body")
.span_note(move_arm.span, "other arm here");
},
);
}
}
}
#[derive(Clone, Copy)]
enum NormalizedPat<'a> {
Wild,
Struct(Option<DefId>, &'a [(Symbol, Self)]),
Tuple(Option<DefId>, &'a [Self]),
Or(&'a [Self]),
Path(Option<DefId>),
LitStr(Symbol),
LitBytes(&'a [u8]),
LitInt(u128),
LitBool(bool),
Range(PatRange),
/// A slice pattern. If the second value is `None`, then this matches an exact size. Otherwise
/// the first value contains everything before the `..` wildcard pattern, and the second value
/// contains everything afterwards. Note that either side, or both sides, may contain zero
/// patterns.
Slice(&'a [Self], Option<&'a [Self]>),
}
#[derive(Clone, Copy)]
struct PatRange {
start: u128,
end: u128,
bounds: RangeEnd,
}
impl PatRange {
fn contains(&self, x: u128) -> bool {
x >= self.start
&& match self.bounds {
RangeEnd::Included => x <= self.end,
RangeEnd::Excluded => x < self.end,
}
}
fn overlaps(&self, other: &Self) -> bool {
// Note: Empty ranges are impossible, so this is correct even though it would return true if an
// empty exclusive range were to reside within an inclusive range.
(match self.bounds {
RangeEnd::Included => self.end >= other.start,
RangeEnd::Excluded => self.end > other.start,
} && match other.bounds {
RangeEnd::Included => self.start <= other.end,
RangeEnd::Excluded => self.start < other.end,
})
}
}
/// Iterates over the pairs of fields with matching names.
fn iter_matching_struct_fields<'a>(
left: &'a [(Symbol, NormalizedPat<'a>)],
right: &'a [(Symbol, NormalizedPat<'a>)],
) -> impl Iterator<Item = (&'a NormalizedPat<'a>, &'a NormalizedPat<'a>)> + 'a {
struct Iter<'a>(
slice::Iter<'a, (Symbol, NormalizedPat<'a>)>,
slice::Iter<'a, (Symbol, NormalizedPat<'a>)>,
);
impl<'a> Iterator for Iter<'a> {
type Item = (&'a NormalizedPat<'a>, &'a NormalizedPat<'a>);
fn next(&mut self) -> Option<Self::Item> {
// Note: all the fields in each slice are sorted by symbol value.
let mut left = self.0.next()?;
let mut right = self.1.next()?;
loop {
match left.0.cmp(&right.0) {
Ordering::Equal => return Some((&left.1, &right.1)),
Ordering::Less => left = self.0.next()?,
Ordering::Greater => right = self.1.next()?,
}
}
}
}
Iter(left.iter(), right.iter())
}
#[expect(clippy::similar_names)]
impl<'a> NormalizedPat<'a> {
#[expect(clippy::too_many_lines)]
fn from_pat(cx: &LateContext<'_>, arena: &'a DroplessArena, pat: &'a Pat<'_>) -> Self {
match pat.kind {
PatKind::Wild | PatKind::Binding(.., None) => Self::Wild,
PatKind::Binding(.., Some(pat)) | PatKind::Box(pat) | PatKind::Ref(pat, _) => {
Self::from_pat(cx, arena, pat)
},
PatKind::Struct(ref path, fields, _) => {
let fields =
arena.alloc_from_iter(fields.iter().map(|f| (f.ident.name, Self::from_pat(cx, arena, f.pat))));
fields.sort_by_key(|&(name, _)| name);
Self::Struct(cx.qpath_res(path, pat.hir_id).opt_def_id(), fields)
},
PatKind::TupleStruct(ref path, pats, wild_idx) => {
let adt = match cx.typeck_results().pat_ty(pat).ty_adt_def() {
Some(x) => x,
None => return Self::Wild,
};
let (var_id, variant) = if adt.is_enum() {
match cx.qpath_res(path, pat.hir_id).opt_def_id() {
Some(x) => (Some(x), adt.variant_with_ctor_id(x)),
None => return Self::Wild,
}
} else {
(None, adt.non_enum_variant())
};
let (front, back) = match wild_idx {
Some(i) => pats.split_at(i),
None => (pats, [].as_slice()),
};
let pats = arena.alloc_from_iter(
front
.iter()
.map(|pat| Self::from_pat(cx, arena, pat))
.chain(iter::repeat_with(|| Self::Wild).take(variant.fields.len() - pats.len()))
.chain(back.iter().map(|pat| Self::from_pat(cx, arena, pat))),
);
Self::Tuple(var_id, pats)
},
PatKind::Or(pats) => Self::Or(arena.alloc_from_iter(pats.iter().map(|pat| Self::from_pat(cx, arena, pat)))),
PatKind::Path(ref path) => Self::Path(cx.qpath_res(path, pat.hir_id).opt_def_id()),
PatKind::Tuple(pats, wild_idx) => {
let field_count = match cx.typeck_results().pat_ty(pat).kind() {
ty::Tuple(subs) => subs.len(),
_ => return Self::Wild,
};
let (front, back) = match wild_idx {
Some(i) => pats.split_at(i),
None => (pats, [].as_slice()),
};
let pats = arena.alloc_from_iter(
front
.iter()
.map(|pat| Self::from_pat(cx, arena, pat))
.chain(iter::repeat_with(|| Self::Wild).take(field_count - pats.len()))
.chain(back.iter().map(|pat| Self::from_pat(cx, arena, pat))),
);
Self::Tuple(None, pats)
},
PatKind::Lit(e) => match &e.kind {
// TODO: Handle negative integers. They're currently treated as a wild match.
ExprKind::Lit(lit) => match lit.node {
LitKind::Str(sym, _) => Self::LitStr(sym),
LitKind::ByteStr(ref bytes) => Self::LitBytes(&**bytes),
LitKind::Byte(val) => Self::LitInt(val.into()),
LitKind::Char(val) => Self::LitInt(val.into()),
LitKind::Int(val, _) => Self::LitInt(val),
LitKind::Bool(val) => Self::LitBool(val),
LitKind::Float(..) | LitKind::Err(_) => Self::Wild,
},
_ => Self::Wild,
},
PatKind::Range(start, end, bounds) => {
// TODO: Handle negative integers. They're currently treated as a wild match.
let start = match start {
None => 0,
Some(e) => match &e.kind {
ExprKind::Lit(lit) => match lit.node {
LitKind::Int(val, _) => val,
LitKind::Char(val) => val.into(),
LitKind::Byte(val) => val.into(),
_ => return Self::Wild,
},
_ => return Self::Wild,
},
};
let (end, bounds) = match end {
None => (u128::MAX, RangeEnd::Included),
Some(e) => match &e.kind {
ExprKind::Lit(lit) => match lit.node {
LitKind::Int(val, _) => (val, bounds),
LitKind::Char(val) => (val.into(), bounds),
LitKind::Byte(val) => (val.into(), bounds),
_ => return Self::Wild,
},
_ => return Self::Wild,
},
};
Self::Range(PatRange { start, end, bounds })
},
PatKind::Slice(front, wild_pat, back) => Self::Slice(
arena.alloc_from_iter(front.iter().map(|pat| Self::from_pat(cx, arena, pat))),
wild_pat.map(|_| &*arena.alloc_from_iter(back.iter().map(|pat| Self::from_pat(cx, arena, pat)))),
),
}
}
/// Checks if two patterns overlap in the values they can match assuming they are for the same
/// type.
fn has_overlapping_values(&self, other: &Self) -> bool {
match (*self, *other) {
(Self::Wild, _) | (_, Self::Wild) => true,
(Self::Or(pats), ref other) | (ref other, Self::Or(pats)) => {
pats.iter().any(|pat| pat.has_overlapping_values(other))
},
(Self::Struct(lpath, lfields), Self::Struct(rpath, rfields)) => {
if lpath != rpath {
return false;
}
iter_matching_struct_fields(lfields, rfields).all(|(lpat, rpat)| lpat.has_overlapping_values(rpat))
},
(Self::Tuple(lpath, lpats), Self::Tuple(rpath, rpats)) => {
if lpath != rpath {
return false;
}
lpats
.iter()
.zip(rpats.iter())
.all(|(lpat, rpat)| lpat.has_overlapping_values(rpat))
},
(Self::Path(x), Self::Path(y)) => x == y,
(Self::LitStr(x), Self::LitStr(y)) => x == y,
(Self::LitBytes(x), Self::LitBytes(y)) => x == y,
(Self::LitInt(x), Self::LitInt(y)) => x == y,
(Self::LitBool(x), Self::LitBool(y)) => x == y,
(Self::Range(ref x), Self::Range(ref y)) => x.overlaps(y),
(Self::Range(ref range), Self::LitInt(x)) | (Self::LitInt(x), Self::Range(ref range)) => range.contains(x),
(Self::Slice(lpats, None), Self::Slice(rpats, None)) => {
lpats.len() == rpats.len() && lpats.iter().zip(rpats.iter()).all(|(x, y)| x.has_overlapping_values(y))
},
(Self::Slice(pats, None), Self::Slice(front, Some(back)))
| (Self::Slice(front, Some(back)), Self::Slice(pats, None)) => {
// Here `pats` is an exact size match. If the combined lengths of `front` and `back` are greater
// then the minium length required will be greater than the length of `pats`.
if pats.len() < front.len() + back.len() {
return false;
}
pats[..front.len()]
.iter()
.zip(front.iter())
.chain(pats[pats.len() - back.len()..].iter().zip(back.iter()))
.all(|(x, y)| x.has_overlapping_values(y))
},
(Self::Slice(lfront, Some(lback)), Self::Slice(rfront, Some(rback))) => lfront
.iter()
.zip(rfront.iter())
.chain(lback.iter().rev().zip(rback.iter().rev()))
.all(|(x, y)| x.has_overlapping_values(y)),
// Enums can mix unit variants with tuple/struct variants. These can never overlap.
(Self::Path(_), Self::Tuple(..) | Self::Struct(..))
| (Self::Tuple(..) | Self::Struct(..), Self::Path(_)) => false,
// Tuples can be matched like a struct.
(Self::Tuple(x, _), Self::Struct(y, _)) | (Self::Struct(x, _), Self::Tuple(y, _)) => {
// TODO: check fields here.
x == y
},
// TODO: Lit* with Path, Range with Path, LitBytes with Slice
_ => true,
}
}
}
fn pat_contains_local(pat: &Pat<'_>, id: HirId) -> bool {
let mut result = false;
pat.walk_short(|p| {
result |= matches!(p.kind, PatKind::Binding(_, binding_id, ..) if binding_id == id);
!result
});
result
}
/// Returns true if all the bindings in the `Pat` are in `ids` and vice versa
fn bindings_eq(pat: &Pat<'_>, mut ids: HirIdSet) -> bool {
let mut result = true;
pat.each_binding_or_first(&mut |_, id, _, _| result &= ids.remove(&id));
result && ids.is_empty()
}