rust-clippy/src/misc.rs

444 lines
16 KiB
Rust
Raw Normal View History

2016-02-24 16:38:57 +00:00
use reexport::*;
use rustc::lint::*;
2016-02-24 16:38:57 +00:00
use rustc::middle::const_eval::ConstVal::Float;
use rustc::middle::const_eval::EvalHint::ExprTypeChecked;
use rustc::middle::const_eval::eval_const_expr_partial;
use rustc::ty;
use rustc_front::hir::*;
2016-02-24 16:38:57 +00:00
use rustc_front::intravisit::FnKind;
use rustc_front::util::{is_comparison_binop, binop_to_string};
use syntax::codemap::{Span, Spanned, ExpnFormat};
2016-02-24 16:38:57 +00:00
use syntax::ptr::P;
2015-12-19 23:15:31 +00:00
use utils::{get_item_name, match_path, snippet, get_parent_expr, span_lint};
use utils::{span_lint_and_then, walk_ptrs_ty, is_integer_literal, implements_trait};
/// **What it does:** This lint checks for function arguments and let bindings denoted as `ref`.
///
/// **Why is this bad?** The `ref` declaration makes the function take an owned value, but turns the argument into a reference (which means that the value is destroyed when exiting the function). This adds not much value: either take a reference type, or take an owned value and create references in the body.
///
/// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The type of `x` is more obvious with the former.
///
/// **Known problems:** If the argument is dereferenced within the function, removing the `ref` will lead to errors. This can be fixed by removing the dereferences, e.g. changing `*x` to `x` within the function.
///
/// **Example:** `fn foo(ref x: u8) -> bool { .. }`
declare_lint! {
pub TOPLEVEL_REF_ARG, Warn,
"An entire binding was declared as `ref`, in a function argument (`fn foo(ref x: Bar)`), \
or a `let` statement (`let ref x = foo()`). In such cases, it is preferred to take \
references with `&`."
}
2014-12-25 23:22:18 +00:00
#[allow(missing_copy_implementations)]
pub struct TopLevelRefPass;
impl LintPass for TopLevelRefPass {
fn get_lints(&self) -> LintArray {
2014-12-25 23:54:44 +00:00
lint_array!(TOPLEVEL_REF_ARG)
}
}
impl LateLintPass for TopLevelRefPass {
fn check_fn(&mut self, cx: &LateContext, k: FnKind, decl: &FnDecl, _: &Block, _: Span, _: NodeId) {
2016-03-23 15:11:24 +00:00
if let FnKind::Closure(_) = k {
// Does not apply to closures
2016-01-04 04:26:12 +00:00
return;
}
2015-08-13 14:41:51 +00:00
for ref arg in &decl.inputs {
if let PatKind::Ident(BindByRef(_), _, _) = arg.pat.node {
span_lint(cx,
2016-01-04 04:26:12 +00:00
TOPLEVEL_REF_ARG,
arg.pat.span,
"`ref` directly on a function argument is ignored. Consider using a reference type instead.");
}
}
}
fn check_stmt(&mut self, cx: &LateContext, s: &Stmt) {
if_let_chain! {
[
let StmtDecl(ref d, _) = s.node,
let DeclLocal(ref l) = d.node,
let PatKind::Ident(BindByRef(_), i, None) = l.pat.node,
let Some(ref init) = l.init
], {
let tyopt = if let Some(ref ty) = l.ty {
format!(": {}", snippet(cx, ty.span, "_"))
} else {
"".to_owned()
};
span_lint_and_then(cx,
TOPLEVEL_REF_ARG,
l.pat.span,
"`ref` on an entire `let` pattern is discouraged, take a reference with & instead",
|db| {
db.span_suggestion(s.span,
"try",
format!("let {}{} = &{};",
snippet(cx, i.span, "_"),
tyopt,
snippet(cx, init.span, "_")));
}
);
}
};
}
}
/// **What it does:** This lint checks for comparisons to NAN.
///
/// **Why is this bad?** NAN does not compare meaningfully to anything not even itself so those comparisons are simply wrong.
///
/// **Known problems:** None
///
/// **Example:** `x == NAN`
declare_lint!(pub CMP_NAN, Deny,
"comparisons to NAN (which will always return false, which is probably not intended)");
#[derive(Copy,Clone)]
pub struct CmpNan;
impl LintPass for CmpNan {
fn get_lints(&self) -> LintArray {
lint_array!(CMP_NAN)
}
}
impl LateLintPass for CmpNan {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
if is_comparison_binop(cmp.node) {
2015-11-24 17:44:40 +00:00
if let ExprPath(_, ref path) = left.node {
check_nan(cx, path, expr.span);
}
2015-11-24 17:44:40 +00:00
if let ExprPath(_, ref path) = right.node {
check_nan(cx, path, expr.span);
}
}
}
}
}
fn check_nan(cx: &LateContext, path: &Path, span: Span) {
2016-01-04 04:26:12 +00:00
path.segments.last().map(|seg| {
if seg.identifier.name.as_str() == "NAN" {
span_lint(cx,
CMP_NAN,
span,
"doomed comparison with NAN, use `std::{f32,f64}::is_nan()` instead");
}
});
}
/// **What it does:** This lint checks for (in-)equality comparisons on floating-point values (apart from zero), except in functions called `*eq*` (which probably implement equality for a type involving floats).
///
/// **Why is this bad?** Floating point calculations are usually imprecise, so asking if two values are *exactly* equal is asking for trouble. For a good guide on what to do, see [the floating point guide](http://www.floating-point-gui.de/errors/comparison).
///
/// **Known problems:** None
///
/// **Example:** `y == 1.23f64`
declare_lint!(pub FLOAT_CMP, Warn,
"using `==` or `!=` on float values (as floating-point operations \
usually involve rounding errors, it is always better to check for approximate \
equality within small bounds)");
#[derive(Copy,Clone)]
pub struct FloatCmp;
impl LintPass for FloatCmp {
fn get_lints(&self) -> LintArray {
lint_array!(FLOAT_CMP)
}
}
impl LateLintPass for FloatCmp {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
let op = cmp.node;
if (op == BiEq || op == BiNe) && (is_float(cx, left) || is_float(cx, right)) {
2016-01-04 04:26:12 +00:00
if is_allowed(cx, left) || is_allowed(cx, right) {
return;
}
2015-09-06 19:03:09 +00:00
if let Some(name) = get_item_name(cx, expr) {
let name = name.as_str();
2016-01-04 04:26:12 +00:00
if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") ||
name.ends_with("_eq") {
2015-09-06 19:03:09 +00:00
return;
}
2015-09-02 08:30:11 +00:00
}
2016-01-04 04:26:12 +00:00
span_lint(cx,
FLOAT_CMP,
expr.span,
2016-03-24 17:07:55 +00:00
&format!("{}-comparison of f32 or f64 detected. Consider changing this to `({} - {}).abs() < \
epsilon` for some suitable value of epsilon. \
std::f32::EPSILON and std::f64::EPSILON are available.",
2016-01-04 04:26:12 +00:00
binop_to_string(op),
snippet(cx, left.span, ".."),
snippet(cx, right.span, "..")));
}
}
}
}
fn is_allowed(cx: &LateContext, expr: &Expr) -> bool {
let res = eval_const_expr_partial(cx.tcx, expr, ExprTypeChecked, None);
if let Ok(Float(val)) = res {
val == 0.0 || val == ::std::f64::INFINITY || val == ::std::f64::NEG_INFINITY
2016-01-04 04:26:12 +00:00
} else {
false
}
}
fn is_float(cx: &LateContext, expr: &Expr) -> bool {
if let ty::TyFloat(_) = walk_ptrs_ty(cx.tcx.expr_ty(expr)).sty {
true
} else {
false
}
}
2015-05-06 10:59:08 +00:00
/// **What it does:** This lint checks for conversions to owned values just for the sake of a comparison.
///
/// **Why is this bad?** The comparison can operate on a reference, so creating an owned value effectively throws it away directly afterwards, which is needlessly consuming code and heap space.
///
/// **Known problems:** None
///
/// **Example:** `x.to_owned() == y`
2015-05-21 12:51:43 +00:00
declare_lint!(pub CMP_OWNED, Warn,
"creating owned instances for comparing with others, e.g. `x == \"foo\".to_string()`");
2015-05-21 12:51:43 +00:00
#[derive(Copy,Clone)]
pub struct CmpOwned;
impl LintPass for CmpOwned {
fn get_lints(&self) -> LintArray {
2015-05-21 12:51:43 +00:00
lint_array!(CMP_OWNED)
}
}
impl LateLintPass for CmpOwned {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, ref left, ref right) = expr.node {
if is_comparison_binop(cmp.node) {
2016-01-18 14:35:50 +00:00
check_to_owned(cx, left, right, true, cmp.span);
check_to_owned(cx, right, left, false, cmp.span)
}
}
}
2015-05-21 12:51:43 +00:00
}
2016-01-18 14:35:50 +00:00
fn check_to_owned(cx: &LateContext, expr: &Expr, other: &Expr, left: bool, op: Span) {
let (arg_ty, snip) = match expr.node {
ExprMethodCall(Spanned{node: ref name, ..}, _, ref args) if args.len() == 1 => {
2016-01-04 04:26:12 +00:00
if name.as_str() == "to_string" || name.as_str() == "to_owned" && is_str_arg(cx, args) {
2016-01-18 14:35:50 +00:00
(cx.tcx.expr_ty(&args[0]), snippet(cx, args[0].span, ".."))
2016-01-04 04:26:12 +00:00
} else {
return;
}
}
ExprCall(ref path, ref v) if v.len() == 1 => {
2015-11-24 17:44:40 +00:00
if let ExprPath(None, ref path) = path.node {
2016-01-04 04:26:12 +00:00
if match_path(path, &["String", "from_str"]) || match_path(path, &["String", "from"]) {
2016-01-18 14:35:50 +00:00
(cx.tcx.expr_ty(&v[0]), snippet(cx, v[0].span, ".."))
2016-01-04 04:26:12 +00:00
} else {
return;
}
} else {
2016-01-04 04:26:12 +00:00
return;
}
}
2016-01-04 04:26:12 +00:00
_ => return,
};
2016-01-18 14:35:50 +00:00
let other_ty = cx.tcx.expr_ty(other);
let partial_eq_trait_id = match cx.tcx.lang_items.eq_trait() {
Some(id) => id,
None => return,
};
if !implements_trait(cx, arg_ty, partial_eq_trait_id, vec![other_ty]) {
2016-01-18 14:35:50 +00:00
return;
}
if left {
2016-01-04 04:26:12 +00:00
span_lint(cx,
CMP_OWNED,
expr.span,
&format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
compare without allocation",
snip,
snippet(cx, op, "=="),
2016-01-18 14:35:50 +00:00
snippet(cx, other.span, "..")));
} else {
2016-01-04 04:26:12 +00:00
span_lint(cx,
CMP_OWNED,
expr.span,
&format!("this creates an owned instance just for comparison. Consider using `{} {} {}` to \
compare without allocation",
2016-01-18 14:35:50 +00:00
snippet(cx, other.span, ".."),
2016-01-04 04:26:12 +00:00
snippet(cx, op, "=="),
snip));
}
2015-05-21 12:51:43 +00:00
}
fn is_str_arg(cx: &LateContext, args: &[P<Expr>]) -> bool {
2016-01-04 04:26:12 +00:00
args.len() == 1 &&
if let ty::TyStr = walk_ptrs_ty(cx.tcx.expr_ty(&args[0])).sty {
true
} else {
false
}
}
2015-08-11 16:55:07 +00:00
/// **What it does:** This lint checks for getting the remainder of a division by one.
///
/// **Why is this bad?** The result can only ever be zero. No one will write such code deliberately, unless trying to win an Underhanded Rust Contest. Even for that contest, it's probably a bad idea. Use something more underhanded.
///
/// **Known problems:** None
///
/// **Example:** `x % 1`
declare_lint!(pub MODULO_ONE, Warn, "taking a number modulo 1, which always returns 0");
#[derive(Copy,Clone)]
pub struct ModuloOne;
impl LintPass for ModuloOne {
fn get_lints(&self) -> LintArray {
lint_array!(MODULO_ONE)
}
}
impl LateLintPass for ModuloOne {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if let ExprBinary(ref cmp, _, ref right) = expr.node {
2015-11-24 17:44:40 +00:00
if let Spanned {node: BinOp_::BiRem, ..} = *cmp {
if is_integer_literal(right, 1) {
cx.span_lint(MODULO_ONE, expr.span, "any number modulo 1 will be 0");
}
}
}
}
}
/// **What it does:** This lint checks for patterns in the form `name @ _`.
///
/// **Why is this bad?** It's almost always more readable to just use direct bindings.
///
/// **Known problems:** None
///
/// **Example**:
/// ```
/// match v {
/// Some(x) => (),
/// y @ _ => (), // easier written as `y`,
/// }
/// ```
declare_lint!(pub REDUNDANT_PATTERN, Warn, "using `name @ _` in a pattern");
#[derive(Copy,Clone)]
pub struct PatternPass;
impl LintPass for PatternPass {
fn get_lints(&self) -> LintArray {
lint_array!(REDUNDANT_PATTERN)
}
}
impl LateLintPass for PatternPass {
fn check_pat(&mut self, cx: &LateContext, pat: &Pat) {
if let PatKind::Ident(_, ref ident, Some(ref right)) = pat.node {
if right.node == PatKind::Wild {
2016-01-04 04:26:12 +00:00
cx.span_lint(REDUNDANT_PATTERN,
pat.span,
&format!("the `{} @ _` pattern can be written as just `{}`",
ident.node.name,
ident.node.name));
}
}
}
}
2015-12-11 22:02:02 +00:00
2015-12-13 05:50:36 +00:00
/// **What it does:** This lint checks for the use of bindings with a single leading underscore
///
/// **Why is this bad?** A single leading underscore is usually used to indicate that a binding
/// will not be used. Using such a binding breaks this expectation.
///
/// **Known problems:** None
2015-12-13 05:50:36 +00:00
///
/// **Example**:
/// ```
/// let _x = 0;
/// let y = _x + 1; // Here we are using `_x`, even though it has a leading underscore.
/// // We should rename `_x` to `x`
/// ```
2015-12-11 22:02:02 +00:00
declare_lint!(pub USED_UNDERSCORE_BINDING, Warn,
"using a binding which is prefixed with an underscore");
#[derive(Copy, Clone)]
pub struct UsedUnderscoreBinding;
impl LintPass for UsedUnderscoreBinding {
fn get_lints(&self) -> LintArray {
lint_array!(USED_UNDERSCORE_BINDING)
}
}
impl LateLintPass for UsedUnderscoreBinding {
#[cfg_attr(rustfmt, rustfmt_skip)]
2015-12-11 22:02:02 +00:00
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
2016-01-04 04:26:12 +00:00
if in_attributes_expansion(cx, expr) {
2016-01-04 14:31:08 +00:00
// Don't lint things expanded by #[derive(...)], etc
return;
}
2015-12-11 22:02:02 +00:00
let needs_lint = match expr.node {
ExprPath(_, ref path) => {
2016-01-04 04:26:12 +00:00
let ident = path.segments
.last()
.expect("path should always have at least one segment")
.identifier;
2016-01-20 01:23:39 +00:00
ident.name.as_str().starts_with('_') &&
!ident.name.as_str().starts_with("__") &&
ident.name != ident.unhygienic_name &&
is_used(cx, expr) // not in bang macro
2016-01-04 04:26:12 +00:00
}
ExprField(_, spanned) => {
let name = spanned.node.as_str();
2016-01-20 01:23:39 +00:00
name.starts_with('_') && !name.starts_with("__")
2016-01-04 04:26:12 +00:00
}
_ => false,
2015-12-11 22:02:02 +00:00
};
if needs_lint {
2016-01-04 04:26:12 +00:00
cx.span_lint(USED_UNDERSCORE_BINDING,
expr.span,
"used binding which is prefixed with an underscore. A leading underscore signals that a \
binding will not be used.");
2015-12-11 22:02:02 +00:00
}
}
}
/// Heuristic to see if an expression is used. Should be compatible with `unused_variables`'s idea
/// of what it means for an expression to be "used".
fn is_used(cx: &LateContext, expr: &Expr) -> bool {
if let Some(ref parent) = get_parent_expr(cx, expr) {
match parent.node {
ExprAssign(_, ref rhs) | ExprAssignOp(_, _, ref rhs) => **rhs == *expr,
2016-01-04 04:26:12 +00:00
_ => is_used(cx, &parent),
}
2016-01-04 04:26:12 +00:00
} else {
true
}
}
/// Test whether an expression is in a macro expansion (e.g. something generated by #[derive(...)]
/// or the like)
fn in_attributes_expansion(cx: &LateContext, expr: &Expr) -> bool {
cx.sess().codemap().with_expn_info(expr.span.expn_id, |info_opt| {
info_opt.map_or(false, |info| {
match info.callee.format {
ExpnFormat::MacroAttribute(_) => true,
_ => false,
}
})
})
}