rust-analyzer/crates/ide-db/src/search.rs
Chayim Refael Friedman b98278307e Don't enable the search fast path for short associated functions when a search scope is set
In most places where we set a search scope it is a single file, and so the fast path will actually harm performance, since it has to search for aliases in the whole project.
The only exception that qualifies for the fast path is SSR (there is an exception that don't qualify for the fast path as it search for `use` items). It sets the search scope to avoid dependencies. We could make it use the fast path, but I didn't bother.
2024-08-25 04:35:58 +03:00

1325 lines
55 KiB
Rust

//! Implementation of find-usages functionality.
//!
//! It is based on the standard ide trick: first, we run a fast text search to
//! get a super-set of matches. Then, we confirm each match using precise
//! name resolution.
use std::mem;
use std::{cell::LazyCell, cmp::Reverse};
use base_db::{salsa::Database, SourceDatabase, SourceRootDatabase};
use hir::{
sym, Adt, AsAssocItem, DefWithBody, FileRange, FileRangeWrapper, HasAttrs, HasContainer,
HasSource, HirFileIdExt, InFile, InFileWrapper, InRealFile, ItemContainer, ModuleSource,
PathResolution, Semantics, Visibility,
};
use memchr::memmem::Finder;
use parser::SyntaxKind;
use rustc_hash::{FxHashMap, FxHashSet};
use span::EditionedFileId;
use syntax::{
ast::{self, HasName},
match_ast, AstNode, AstToken, SmolStr, SyntaxElement, SyntaxNode, TextRange, TextSize,
ToSmolStr,
};
use triomphe::Arc;
use crate::{
defs::{Definition, NameClass, NameRefClass},
traits::{as_trait_assoc_def, convert_to_def_in_trait},
RootDatabase,
};
#[derive(Debug, Default, Clone)]
pub struct UsageSearchResult {
pub references: FxHashMap<EditionedFileId, Vec<FileReference>>,
}
impl UsageSearchResult {
pub fn is_empty(&self) -> bool {
self.references.is_empty()
}
pub fn len(&self) -> usize {
self.references.len()
}
pub fn iter(&self) -> impl Iterator<Item = (EditionedFileId, &[FileReference])> + '_ {
self.references.iter().map(|(&file_id, refs)| (file_id, &**refs))
}
pub fn file_ranges(&self) -> impl Iterator<Item = FileRange> + '_ {
self.references.iter().flat_map(|(&file_id, refs)| {
refs.iter().map(move |&FileReference { range, .. }| FileRange { file_id, range })
})
}
}
impl IntoIterator for UsageSearchResult {
type Item = (EditionedFileId, Vec<FileReference>);
type IntoIter = <FxHashMap<EditionedFileId, Vec<FileReference>> as IntoIterator>::IntoIter;
fn into_iter(self) -> Self::IntoIter {
self.references.into_iter()
}
}
#[derive(Debug, Clone)]
pub struct FileReference {
/// The range of the reference in the original file
pub range: TextRange,
/// The node of the reference in the (macro-)file
pub name: FileReferenceNode,
pub category: ReferenceCategory,
}
#[derive(Debug, Clone)]
pub enum FileReferenceNode {
Name(ast::Name),
NameRef(ast::NameRef),
Lifetime(ast::Lifetime),
FormatStringEntry(ast::String, TextRange),
}
impl FileReferenceNode {
pub fn text_range(&self) -> TextRange {
match self {
FileReferenceNode::Name(it) => it.syntax().text_range(),
FileReferenceNode::NameRef(it) => it.syntax().text_range(),
FileReferenceNode::Lifetime(it) => it.syntax().text_range(),
FileReferenceNode::FormatStringEntry(_, range) => *range,
}
}
pub fn syntax(&self) -> SyntaxElement {
match self {
FileReferenceNode::Name(it) => it.syntax().clone().into(),
FileReferenceNode::NameRef(it) => it.syntax().clone().into(),
FileReferenceNode::Lifetime(it) => it.syntax().clone().into(),
FileReferenceNode::FormatStringEntry(it, _) => it.syntax().clone().into(),
}
}
pub fn into_name_like(self) -> Option<ast::NameLike> {
match self {
FileReferenceNode::Name(it) => Some(ast::NameLike::Name(it)),
FileReferenceNode::NameRef(it) => Some(ast::NameLike::NameRef(it)),
FileReferenceNode::Lifetime(it) => Some(ast::NameLike::Lifetime(it)),
FileReferenceNode::FormatStringEntry(_, _) => None,
}
}
pub fn as_name_ref(&self) -> Option<&ast::NameRef> {
match self {
FileReferenceNode::NameRef(name_ref) => Some(name_ref),
_ => None,
}
}
pub fn as_lifetime(&self) -> Option<&ast::Lifetime> {
match self {
FileReferenceNode::Lifetime(lifetime) => Some(lifetime),
_ => None,
}
}
pub fn text(&self) -> syntax::TokenText<'_> {
match self {
FileReferenceNode::NameRef(name_ref) => name_ref.text(),
FileReferenceNode::Name(name) => name.text(),
FileReferenceNode::Lifetime(lifetime) => lifetime.text(),
FileReferenceNode::FormatStringEntry(it, range) => {
syntax::TokenText::borrowed(&it.text()[*range - it.syntax().text_range().start()])
}
}
}
}
bitflags::bitflags! {
#[derive(Copy, Clone, Default, PartialEq, Eq, Hash, Debug)]
pub struct ReferenceCategory: u8 {
// FIXME: Add this variant and delete the `retain_adt_literal_usages` function.
// const CREATE = 1 << 0;
const WRITE = 1 << 0;
const READ = 1 << 1;
const IMPORT = 1 << 2;
const TEST = 1 << 3;
}
}
/// Generally, `search_scope` returns files that might contain references for the element.
/// For `pub(crate)` things it's a crate, for `pub` things it's a crate and dependant crates.
/// In some cases, the location of the references is known to within a `TextRange`,
/// e.g. for things like local variables.
#[derive(Clone, Debug)]
pub struct SearchScope {
entries: FxHashMap<EditionedFileId, Option<TextRange>>,
}
impl SearchScope {
fn new(entries: FxHashMap<EditionedFileId, Option<TextRange>>) -> SearchScope {
SearchScope { entries }
}
/// Build a search scope spanning the entire crate graph of files.
fn crate_graph(db: &RootDatabase) -> SearchScope {
let mut entries = FxHashMap::default();
let graph = db.crate_graph();
for krate in graph.iter() {
let root_file = graph[krate].root_file_id;
let source_root_id = db.file_source_root(root_file);
let source_root = db.source_root(source_root_id);
entries.extend(
source_root.iter().map(|id| (EditionedFileId::new(id, graph[krate].edition), None)),
);
}
SearchScope { entries }
}
/// Build a search scope spanning all the reverse dependencies of the given crate.
fn reverse_dependencies(db: &RootDatabase, of: hir::Crate) -> SearchScope {
let mut entries = FxHashMap::default();
for rev_dep in of.transitive_reverse_dependencies(db) {
let root_file = rev_dep.root_file(db);
let source_root_id = db.file_source_root(root_file);
let source_root = db.source_root(source_root_id);
entries.extend(
source_root.iter().map(|id| (EditionedFileId::new(id, rev_dep.edition(db)), None)),
);
}
SearchScope { entries }
}
/// Build a search scope spanning the given crate.
fn krate(db: &RootDatabase, of: hir::Crate) -> SearchScope {
let root_file = of.root_file(db);
let source_root_id = db.file_source_root(root_file);
let source_root = db.source_root(source_root_id);
SearchScope {
entries: source_root
.iter()
.map(|id| (EditionedFileId::new(id, of.edition(db)), None))
.collect(),
}
}
/// Build a search scope spanning the given module and all its submodules.
pub fn module_and_children(db: &RootDatabase, module: hir::Module) -> SearchScope {
let mut entries = FxHashMap::default();
let (file_id, range) = {
let InFile { file_id, value } = module.definition_source_range(db);
if let Some(InRealFile { file_id, value: call_source }) = file_id.original_call_node(db)
{
(file_id, Some(call_source.text_range()))
} else {
(file_id.original_file(db), Some(value))
}
};
entries.entry(file_id).or_insert(range);
let mut to_visit: Vec<_> = module.children(db).collect();
while let Some(module) = to_visit.pop() {
if let Some(file_id) = module.as_source_file_id(db) {
entries.insert(file_id, None);
}
to_visit.extend(module.children(db));
}
SearchScope { entries }
}
/// Build an empty search scope.
pub fn empty() -> SearchScope {
SearchScope::new(FxHashMap::default())
}
/// Build a empty search scope spanning the given file.
pub fn single_file(file: EditionedFileId) -> SearchScope {
SearchScope::new(std::iter::once((file, None)).collect())
}
/// Build a empty search scope spanning the text range of the given file.
pub fn file_range(range: FileRange) -> SearchScope {
SearchScope::new(std::iter::once((range.file_id, Some(range.range))).collect())
}
/// Build a empty search scope spanning the given files.
pub fn files(files: &[EditionedFileId]) -> SearchScope {
SearchScope::new(files.iter().map(|f| (*f, None)).collect())
}
pub fn intersection(&self, other: &SearchScope) -> SearchScope {
let (mut small, mut large) = (&self.entries, &other.entries);
if small.len() > large.len() {
mem::swap(&mut small, &mut large)
}
let intersect_ranges =
|r1: Option<TextRange>, r2: Option<TextRange>| -> Option<Option<TextRange>> {
match (r1, r2) {
(None, r) | (r, None) => Some(r),
(Some(r1), Some(r2)) => r1.intersect(r2).map(Some),
}
};
let res = small
.iter()
.filter_map(|(&file_id, &r1)| {
let &r2 = large.get(&file_id)?;
let r = intersect_ranges(r1, r2)?;
Some((file_id, r))
})
.collect();
SearchScope::new(res)
}
}
impl IntoIterator for SearchScope {
type Item = (EditionedFileId, Option<TextRange>);
type IntoIter = std::collections::hash_map::IntoIter<EditionedFileId, Option<TextRange>>;
fn into_iter(self) -> Self::IntoIter {
self.entries.into_iter()
}
}
impl Definition {
fn search_scope(&self, db: &RootDatabase) -> SearchScope {
let _p = tracing::info_span!("search_scope").entered();
if let Definition::BuiltinType(_) = self {
return SearchScope::crate_graph(db);
}
// def is crate root
if let &Definition::Module(module) = self {
if module.is_crate_root() {
return SearchScope::reverse_dependencies(db, module.krate());
}
}
let module = match self.module(db) {
Some(it) => it,
None => return SearchScope::empty(),
};
let InFile { file_id, value: module_source } = module.definition_source(db);
let file_id = file_id.original_file(db);
if let Definition::Local(var) = self {
let def = match var.parent(db) {
DefWithBody::Function(f) => f.source(db).map(|src| src.syntax().cloned()),
DefWithBody::Const(c) => c.source(db).map(|src| src.syntax().cloned()),
DefWithBody::Static(s) => s.source(db).map(|src| src.syntax().cloned()),
DefWithBody::Variant(v) => v.source(db).map(|src| src.syntax().cloned()),
// FIXME: implement
DefWithBody::InTypeConst(_) => return SearchScope::empty(),
};
return match def {
Some(def) => SearchScope::file_range(
def.as_ref().original_file_range_with_macro_call_body(db),
),
None => SearchScope::single_file(file_id),
};
}
if let Definition::SelfType(impl_) = self {
return match impl_.source(db).map(|src| src.syntax().cloned()) {
Some(def) => SearchScope::file_range(
def.as_ref().original_file_range_with_macro_call_body(db),
),
None => SearchScope::single_file(file_id),
};
}
if let Definition::GenericParam(hir::GenericParam::LifetimeParam(param)) = self {
let def = match param.parent(db) {
hir::GenericDef::Function(it) => it.source(db).map(|src| src.syntax().cloned()),
hir::GenericDef::Adt(it) => it.source(db).map(|src| src.syntax().cloned()),
hir::GenericDef::Trait(it) => it.source(db).map(|src| src.syntax().cloned()),
hir::GenericDef::TraitAlias(it) => it.source(db).map(|src| src.syntax().cloned()),
hir::GenericDef::TypeAlias(it) => it.source(db).map(|src| src.syntax().cloned()),
hir::GenericDef::Impl(it) => it.source(db).map(|src| src.syntax().cloned()),
hir::GenericDef::Const(it) => it.source(db).map(|src| src.syntax().cloned()),
};
return match def {
Some(def) => SearchScope::file_range(
def.as_ref().original_file_range_with_macro_call_body(db),
),
None => SearchScope::single_file(file_id),
};
}
if let Definition::Macro(macro_def) = self {
return match macro_def.kind(db) {
hir::MacroKind::Declarative => {
if macro_def.attrs(db).by_key(&sym::macro_export).exists() {
SearchScope::reverse_dependencies(db, module.krate())
} else {
SearchScope::krate(db, module.krate())
}
}
hir::MacroKind::BuiltIn => SearchScope::crate_graph(db),
hir::MacroKind::Derive | hir::MacroKind::Attr | hir::MacroKind::ProcMacro => {
SearchScope::reverse_dependencies(db, module.krate())
}
};
}
if let Definition::DeriveHelper(_) = self {
return SearchScope::reverse_dependencies(db, module.krate());
}
let vis = self.visibility(db);
if let Some(Visibility::Public) = vis {
return SearchScope::reverse_dependencies(db, module.krate());
}
if let Some(Visibility::Module(module, _)) = vis {
return SearchScope::module_and_children(db, module.into());
}
let range = match module_source {
ModuleSource::Module(m) => Some(m.syntax().text_range()),
ModuleSource::BlockExpr(b) => Some(b.syntax().text_range()),
ModuleSource::SourceFile(_) => None,
};
match range {
Some(range) => SearchScope::file_range(FileRange { file_id, range }),
None => SearchScope::single_file(file_id),
}
}
pub fn usages<'a>(self, sema: &'a Semantics<'_, RootDatabase>) -> FindUsages<'a> {
FindUsages {
def: self,
assoc_item_container: self.as_assoc_item(sema.db).map(|a| a.container(sema.db)),
sema,
scope: None,
include_self_kw_refs: None,
search_self_mod: false,
}
}
}
#[derive(Clone)]
pub struct FindUsages<'a> {
def: Definition,
sema: &'a Semantics<'a, RootDatabase>,
scope: Option<&'a SearchScope>,
/// The container of our definition should it be an assoc item
assoc_item_container: Option<hir::AssocItemContainer>,
/// whether to search for the `Self` type of the definition
include_self_kw_refs: Option<hir::Type>,
/// whether to search for the `self` module
search_self_mod: bool,
}
impl<'a> FindUsages<'a> {
/// Enable searching for `Self` when the definition is a type or `self` for modules.
pub fn include_self_refs(mut self) -> Self {
self.include_self_kw_refs = def_to_ty(self.sema, &self.def);
self.search_self_mod = true;
self
}
/// Limit the search to a given [`SearchScope`].
pub fn in_scope(self, scope: &'a SearchScope) -> Self {
self.set_scope(Some(scope))
}
/// Limit the search to a given [`SearchScope`].
pub fn set_scope(mut self, scope: Option<&'a SearchScope>) -> Self {
assert!(self.scope.is_none());
self.scope = scope;
self
}
pub fn at_least_one(&self) -> bool {
let mut found = false;
self.search(&mut |_, _| {
found = true;
true
});
found
}
pub fn all(self) -> UsageSearchResult {
let mut res = UsageSearchResult::default();
self.search(&mut |file_id, reference| {
res.references.entry(file_id).or_default().push(reference);
false
});
res
}
fn scope_files<'b>(
db: &'b RootDatabase,
scope: &'b SearchScope,
) -> impl Iterator<Item = (Arc<str>, EditionedFileId, TextRange)> + 'b {
scope.entries.iter().map(|(&file_id, &search_range)| {
let text = db.file_text(file_id.file_id());
let search_range =
search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(&*text)));
(text, file_id, search_range)
})
}
fn match_indices<'b>(
text: &'b str,
finder: &'b Finder<'b>,
search_range: TextRange,
) -> impl Iterator<Item = TextSize> + 'b {
finder.find_iter(text.as_bytes()).filter_map(move |idx| {
let offset: TextSize = idx.try_into().unwrap();
if !search_range.contains_inclusive(offset) {
return None;
}
// If this is not a word boundary, that means this is only part of an identifier,
// so it can't be what we're looking for.
// This speeds up short identifiers significantly.
if text[..idx]
.chars()
.next_back()
.is_some_and(|ch| matches!(ch, 'A'..='Z' | 'a'..='z' | '_'))
|| text[idx + finder.needle().len()..]
.chars()
.next()
.is_some_and(|ch| matches!(ch, 'A'..='Z' | 'a'..='z' | '_' | '0'..='9'))
{
return None;
}
Some(offset)
})
}
fn find_nodes<'b>(
sema: &'b Semantics<'_, RootDatabase>,
name: &str,
node: &syntax::SyntaxNode,
offset: TextSize,
) -> impl Iterator<Item = SyntaxNode> + 'b {
node.token_at_offset(offset)
.find(|it| {
// `name` is stripped of raw ident prefix. See the comment on name retrieval below.
it.text().trim_start_matches("r#") == name
})
.into_iter()
.flat_map(move |token| {
sema.descend_into_macros_exact_if_in_macro(token)
.into_iter()
.filter_map(|it| it.parent())
})
}
/// Performs a special fast search for associated functions. This is mainly intended
/// to speed up `new()` which can take a long time.
///
/// The trick is instead of searching for `func_name` search for `TypeThatContainsContainerName::func_name`.
/// We cannot search exactly that (not even in tokens), because `ContainerName` may be aliased.
/// Instead, we perform a textual search for `ContainerName`. Then, we look for all cases where
/// `ContainerName` may be aliased (that includes `use ContainerName as Xyz` and
/// `type Xyz = ContainerName`). We collect a list of all possible aliases of `ContainerName`.
/// The list can have false positives (because there may be multiple types named `ContainerName`),
/// but it cannot have false negatives. Then, we look for `TypeThatContainsContainerNameOrAnyAlias::func_name`.
/// Those that will be found are of high chance to be actual hits (of course, we will need to verify
/// that).
///
/// Returns true if completed the search.
// FIXME: Extend this to other cases, such as associated types/consts/enum variants (note those can be `use`d).
fn short_associated_function_fast_search(
&self,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
search_scope: &SearchScope,
name: &str,
) -> bool {
if self.scope.is_some() {
return false;
}
let _p = tracing::info_span!("short_associated_function_fast_search").entered();
let container = (|| {
let Definition::Function(function) = self.def else {
return None;
};
if function.has_self_param(self.sema.db) {
return None;
}
match function.container(self.sema.db) {
// Only freestanding `impl`s qualify; methods from trait
// can be called from within subtraits and bounds.
ItemContainer::Impl(impl_) => {
let has_trait = impl_.trait_(self.sema.db).is_some();
if has_trait {
return None;
}
let adt = impl_.self_ty(self.sema.db).as_adt()?;
Some(adt)
}
_ => None,
}
})();
let Some(container) = container else {
return false;
};
fn has_any_name(node: &SyntaxNode, mut predicate: impl FnMut(&str) -> bool) -> bool {
node.descendants().any(|node| {
match_ast! {
match node {
ast::Name(it) => predicate(it.text().trim_start_matches("r#")),
ast::NameRef(it) => predicate(it.text().trim_start_matches("r#")),
_ => false
}
}
})
}
// This is a fixpoint algorithm with O(number of aliases), but most types have no or few aliases,
// so this should stay fast.
//
/// Returns `(aliases, ranges_where_Self_can_refer_to_our_type)`.
fn collect_possible_aliases(
sema: &Semantics<'_, RootDatabase>,
container: Adt,
) -> Option<(FxHashSet<SmolStr>, Vec<FileRangeWrapper<EditionedFileId>>)> {
fn insert_type_alias(
db: &RootDatabase,
to_process: &mut Vec<(SmolStr, SearchScope)>,
alias_name: &str,
def: Definition,
) {
let alias = alias_name.trim_start_matches("r#").to_smolstr();
tracing::debug!("found alias: {alias}");
to_process.push((alias, def.search_scope(db)));
}
let _p = tracing::info_span!("collect_possible_aliases").entered();
let db = sema.db;
let container_name = container.name(db).unescaped().display(db).to_smolstr();
let search_scope = Definition::from(container).search_scope(db);
let mut seen = FxHashSet::default();
let mut completed = FxHashSet::default();
let mut to_process = vec![(container_name, search_scope)];
let mut is_possibly_self = Vec::new();
let mut total_files_searched = 0;
while let Some((current_to_process, current_to_process_search_scope)) = to_process.pop()
{
let is_alias = |alias: &ast::TypeAlias| {
let def = sema.to_def(alias)?;
let ty = def.ty(db);
let is_alias = ty.as_adt()? == container;
is_alias.then_some(def)
};
let finder = Finder::new(current_to_process.as_bytes());
for (file_text, file_id, search_range) in
FindUsages::scope_files(db, &current_to_process_search_scope)
{
let tree = LazyCell::new(move || sema.parse(file_id).syntax().clone());
for offset in FindUsages::match_indices(&file_text, &finder, search_range) {
let usages =
FindUsages::find_nodes(sema, &current_to_process, &tree, offset)
.filter(|it| {
matches!(it.kind(), SyntaxKind::NAME | SyntaxKind::NAME_REF)
});
for usage in usages {
if let Some(alias) = usage.parent().and_then(|it| {
let path = ast::PathSegment::cast(it)?.parent_path();
let use_tree = ast::UseTree::cast(path.syntax().parent()?)?;
use_tree.rename()?.name()
}) {
if seen.insert(InFileWrapper::new(
file_id,
alias.syntax().text_range(),
)) {
tracing::debug!("found alias: {alias}");
cov_mark::hit!(container_use_rename);
// FIXME: `use`s have no easy way to determine their search scope, but they are rare.
to_process.push((
alias.text().to_smolstr(),
current_to_process_search_scope.clone(),
));
}
} else if let Some(alias) =
usage.ancestors().find_map(ast::TypeAlias::cast)
{
if let Some(name) = alias.name() {
if seen.insert(InFileWrapper::new(
file_id,
name.syntax().text_range(),
)) {
if let Some(def) = is_alias(&alias) {
cov_mark::hit!(container_type_alias);
insert_type_alias(
sema.db,
&mut to_process,
name.text().as_str(),
def.into(),
);
} else {
cov_mark::hit!(same_name_different_def_type_alias);
}
}
}
}
// We need to account for `Self`. It can only refer to our type inside an impl.
let impl_ = 'impl_: {
for ancestor in usage.ancestors() {
if let Some(parent) = ancestor.parent() {
if let Some(parent) = ast::Impl::cast(parent) {
// Only if the GENERIC_PARAM_LIST is directly under impl, otherwise it may be in the self ty.
if matches!(
ancestor.kind(),
SyntaxKind::ASSOC_ITEM_LIST
| SyntaxKind::WHERE_CLAUSE
| SyntaxKind::GENERIC_PARAM_LIST
) {
break;
}
if parent
.trait_()
.is_some_and(|trait_| *trait_.syntax() == ancestor)
{
break;
}
// Otherwise, found an impl where its self ty may be our type.
break 'impl_ Some(parent);
}
}
}
None
};
(|| {
let impl_ = impl_?;
is_possibly_self.push(sema.original_range(impl_.syntax()));
let assoc_items = impl_.assoc_item_list()?;
let type_aliases = assoc_items
.syntax()
.descendants()
.filter_map(ast::TypeAlias::cast);
for type_alias in type_aliases {
let Some(ty) = type_alias.ty() else { continue };
let Some(name) = type_alias.name() else { continue };
let contains_self = ty
.syntax()
.descendants_with_tokens()
.any(|node| node.kind() == SyntaxKind::SELF_TYPE_KW);
if !contains_self {
continue;
}
if seen.insert(InFileWrapper::new(
file_id,
name.syntax().text_range(),
)) {
if let Some(def) = is_alias(&type_alias) {
cov_mark::hit!(self_type_alias);
insert_type_alias(
sema.db,
&mut to_process,
name.text().as_str(),
def.into(),
);
} else {
cov_mark::hit!(same_name_different_def_type_alias);
}
}
}
Some(())
})();
}
}
}
completed.insert(current_to_process);
total_files_searched += current_to_process_search_scope.entries.len();
// FIXME: Maybe this needs to be relative to the project size, or at least to the initial search scope?
if total_files_searched > 20_000 && completed.len() > 100 {
// This case is extremely unlikely (even searching for `Vec::new()` on rust-analyzer does not enter
// here - it searches less than 10,000 files, and it does so in five seconds), but if we get here,
// we at a risk of entering an almost-infinite loop of growing the aliases list. So just stop and
// let normal search handle this case.
tracing::info!(aliases_count = %completed.len(), "too much aliases; leaving fast path");
return None;
}
}
// Impls can contain each other, so we need to deduplicate their ranges.
is_possibly_self.sort_unstable_by_key(|position| {
(position.file_id, position.range.start(), Reverse(position.range.end()))
});
is_possibly_self.dedup_by(|pos2, pos1| {
pos1.file_id == pos2.file_id
&& pos1.range.start() <= pos2.range.start()
&& pos1.range.end() >= pos2.range.end()
});
tracing::info!(aliases_count = %completed.len(), "aliases search completed");
Some((completed, is_possibly_self))
}
fn search(
this: &FindUsages<'_>,
finder: &Finder<'_>,
name: &str,
files: impl Iterator<Item = (Arc<str>, EditionedFileId, TextRange)>,
mut container_predicate: impl FnMut(
&SyntaxNode,
InFileWrapper<EditionedFileId, TextRange>,
) -> bool,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) {
for (file_text, file_id, search_range) in files {
let tree = LazyCell::new(move || this.sema.parse(file_id).syntax().clone());
for offset in FindUsages::match_indices(&file_text, finder, search_range) {
let usages = FindUsages::find_nodes(this.sema, name, &tree, offset)
.filter_map(ast::NameRef::cast);
for usage in usages {
let found_usage = usage
.syntax()
.parent()
.and_then(ast::PathSegment::cast)
.map(|path_segment| {
container_predicate(
path_segment.parent_path().syntax(),
InFileWrapper::new(file_id, usage.syntax().text_range()),
)
})
.unwrap_or(false);
if found_usage {
this.found_name_ref(&usage, sink);
}
}
}
}
}
let Some((container_possible_aliases, is_possibly_self)) =
collect_possible_aliases(self.sema, container)
else {
return false;
};
cov_mark::hit!(short_associated_function_fast_search);
// FIXME: If Rust ever gains the ability to `use Struct::method` we'll also need to account for free
// functions.
let finder = Finder::new(name.as_bytes());
// The search for `Self` may return duplicate results with `ContainerName`, so deduplicate them.
let mut self_positions = FxHashSet::default();
tracing::info_span!("Self_search").in_scope(|| {
search(
self,
&finder,
name,
is_possibly_self.into_iter().map(|position| {
(
self.sema.db.file_text(position.file_id.file_id()),
position.file_id,
position.range,
)
}),
|path, name_position| {
let has_self = path
.descendants_with_tokens()
.any(|node| node.kind() == SyntaxKind::SELF_TYPE_KW);
if has_self {
self_positions.insert(name_position);
}
has_self
},
sink,
)
});
tracing::info_span!("aliases_search").in_scope(|| {
search(
self,
&finder,
name,
FindUsages::scope_files(self.sema.db, search_scope),
|path, name_position| {
has_any_name(path, |name| container_possible_aliases.contains(name))
&& !self_positions.contains(&name_position)
},
sink,
)
});
true
}
pub fn search(&self, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool) {
let _p = tracing::info_span!("FindUsages:search").entered();
let sema = self.sema;
let search_scope = {
// FIXME: Is the trait scope needed for trait impl assoc items?
let base =
as_trait_assoc_def(sema.db, self.def).unwrap_or(self.def).search_scope(sema.db);
match &self.scope {
None => base,
Some(scope) => base.intersection(scope),
}
};
let name = match self.def {
// special case crate modules as these do not have a proper name
Definition::Module(module) if module.is_crate_root() => {
// FIXME: This assumes the crate name is always equal to its display name when it
// really isn't
// we should instead look at the dependency edge name and recursively search our way
// up the ancestors
module
.krate()
.display_name(self.sema.db)
.map(|crate_name| crate_name.crate_name().symbol().as_str().into())
}
_ => {
let self_kw_refs = || {
self.include_self_kw_refs.as_ref().and_then(|ty| {
ty.as_adt()
.map(|adt| adt.name(self.sema.db))
.or_else(|| ty.as_builtin().map(|builtin| builtin.name()))
})
};
// We need to unescape the name in case it is written without "r#" in earlier
// editions of Rust where it isn't a keyword.
self.def
.name(sema.db)
.or_else(self_kw_refs)
.map(|it| it.unescaped().display(sema.db).to_smolstr())
}
};
let name = match &name {
Some(s) => s.as_str(),
None => return,
};
// FIXME: This should probably depend on the number of the results (specifically, the number of false results).
if name.len() <= 7 && self.short_associated_function_fast_search(sink, &search_scope, name)
{
return;
}
let finder = &Finder::new(name);
let include_self_kw_refs =
self.include_self_kw_refs.as_ref().map(|ty| (ty, Finder::new("Self")));
for (text, file_id, search_range) in Self::scope_files(sema.db, &search_scope) {
self.sema.db.unwind_if_cancelled();
let tree = LazyCell::new(move || sema.parse(file_id).syntax().clone());
// Search for occurrences of the items name
for offset in Self::match_indices(&text, finder, search_range) {
tree.token_at_offset(offset).for_each(|token| {
let Some(str_token) = ast::String::cast(token.clone()) else { return };
if let Some((range, nameres)) =
sema.check_for_format_args_template(token, offset)
{
if self.found_format_args_ref(file_id, range, str_token, nameres, sink) {}
}
});
for name in
Self::find_nodes(sema, name, &tree, offset).filter_map(ast::NameLike::cast)
{
if match name {
ast::NameLike::NameRef(name_ref) => self.found_name_ref(&name_ref, sink),
ast::NameLike::Name(name) => self.found_name(&name, sink),
ast::NameLike::Lifetime(lifetime) => self.found_lifetime(&lifetime, sink),
} {
return;
}
}
}
// Search for occurrences of the `Self` referring to our type
if let Some((self_ty, finder)) = &include_self_kw_refs {
for offset in Self::match_indices(&text, finder, search_range) {
for name_ref in
Self::find_nodes(sema, "Self", &tree, offset).filter_map(ast::NameRef::cast)
{
if self.found_self_ty_name_ref(self_ty, &name_ref, sink) {
return;
}
}
}
}
}
// Search for `super` and `crate` resolving to our module
if let Definition::Module(module) = self.def {
let scope =
search_scope.intersection(&SearchScope::module_and_children(self.sema.db, module));
let is_crate_root = module.is_crate_root().then(|| Finder::new("crate"));
let finder = &Finder::new("super");
for (text, file_id, search_range) in Self::scope_files(sema.db, &scope) {
self.sema.db.unwind_if_cancelled();
let tree = LazyCell::new(move || sema.parse(file_id).syntax().clone());
for offset in Self::match_indices(&text, finder, search_range) {
for name_ref in Self::find_nodes(sema, "super", &tree, offset)
.filter_map(ast::NameRef::cast)
{
if self.found_name_ref(&name_ref, sink) {
return;
}
}
}
if let Some(finder) = &is_crate_root {
for offset in Self::match_indices(&text, finder, search_range) {
for name_ref in Self::find_nodes(sema, "crate", &tree, offset)
.filter_map(ast::NameRef::cast)
{
if self.found_name_ref(&name_ref, sink) {
return;
}
}
}
}
}
}
// search for module `self` references in our module's definition source
match self.def {
Definition::Module(module) if self.search_self_mod => {
let src = module.definition_source(sema.db);
let file_id = src.file_id.original_file(sema.db);
let (file_id, search_range) = match src.value {
ModuleSource::Module(m) => (file_id, Some(m.syntax().text_range())),
ModuleSource::BlockExpr(b) => (file_id, Some(b.syntax().text_range())),
ModuleSource::SourceFile(_) => (file_id, None),
};
let search_range = if let Some(&range) = search_scope.entries.get(&file_id) {
match (range, search_range) {
(None, range) | (range, None) => range,
(Some(range), Some(search_range)) => match range.intersect(search_range) {
Some(range) => Some(range),
None => return,
},
}
} else {
return;
};
let text = sema.db.file_text(file_id.file_id());
let search_range =
search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(&*text)));
let tree = LazyCell::new(|| sema.parse(file_id).syntax().clone());
let finder = &Finder::new("self");
for offset in Self::match_indices(&text, finder, search_range) {
for name_ref in
Self::find_nodes(sema, "self", &tree, offset).filter_map(ast::NameRef::cast)
{
if self.found_self_module_name_ref(&name_ref, sink) {
return;
}
}
}
}
_ => {}
}
}
fn found_self_ty_name_ref(
&self,
self_ty: &hir::Type,
name_ref: &ast::NameRef,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) -> bool {
// See https://github.com/rust-lang/rust-analyzer/pull/15864/files/e0276dc5ddc38c65240edb408522bb869f15afb4#r1389848845
let ty_eq = |ty: hir::Type| match (ty.as_adt(), self_ty.as_adt()) {
(Some(ty), Some(self_ty)) => ty == self_ty,
(None, None) => ty == *self_ty,
_ => false,
};
match NameRefClass::classify(self.sema, name_ref) {
Some(NameRefClass::Definition(Definition::SelfType(impl_)))
if ty_eq(impl_.self_ty(self.sema.db)) =>
{
let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::NameRef(name_ref.clone()),
category: ReferenceCategory::empty(),
};
sink(file_id, reference)
}
_ => false,
}
}
fn found_self_module_name_ref(
&self,
name_ref: &ast::NameRef,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) -> bool {
match NameRefClass::classify(self.sema, name_ref) {
Some(NameRefClass::Definition(def @ Definition::Module(_))) if def == self.def => {
let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax());
let category = if is_name_ref_in_import(name_ref) {
ReferenceCategory::IMPORT
} else {
ReferenceCategory::empty()
};
let reference = FileReference {
range,
name: FileReferenceNode::NameRef(name_ref.clone()),
category,
};
sink(file_id, reference)
}
_ => false,
}
}
fn found_format_args_ref(
&self,
file_id: EditionedFileId,
range: TextRange,
token: ast::String,
res: Option<PathResolution>,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) -> bool {
match res.map(Definition::from) {
Some(def) if def == self.def => {
let reference = FileReference {
range,
name: FileReferenceNode::FormatStringEntry(token, range),
category: ReferenceCategory::READ,
};
sink(file_id, reference)
}
_ => false,
}
}
fn found_lifetime(
&self,
lifetime: &ast::Lifetime,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) -> bool {
match NameRefClass::classify_lifetime(self.sema, lifetime) {
Some(NameRefClass::Definition(def)) if def == self.def => {
let FileRange { file_id, range } = self.sema.original_range(lifetime.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::Lifetime(lifetime.clone()),
category: ReferenceCategory::empty(),
};
sink(file_id, reference)
}
_ => false,
}
}
fn found_name_ref(
&self,
name_ref: &ast::NameRef,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) -> bool {
match NameRefClass::classify(self.sema, name_ref) {
Some(NameRefClass::Definition(def))
if self.def == def
// is our def a trait assoc item? then we want to find all assoc items from trait impls of our trait
|| matches!(self.assoc_item_container, Some(hir::AssocItemContainer::Trait(_)))
&& convert_to_def_in_trait(self.sema.db, def) == self.def =>
{
let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::NameRef(name_ref.clone()),
category: ReferenceCategory::new(self.sema, &def, name_ref),
};
sink(file_id, reference)
}
// FIXME: special case type aliases, we can't filter between impl and trait defs here as we lack the substitutions
// so we always resolve all assoc type aliases to both their trait def and impl defs
Some(NameRefClass::Definition(def))
if self.assoc_item_container.is_some()
&& matches!(self.def, Definition::TypeAlias(_))
&& convert_to_def_in_trait(self.sema.db, def)
== convert_to_def_in_trait(self.sema.db, self.def) =>
{
let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::NameRef(name_ref.clone()),
category: ReferenceCategory::new(self.sema, &def, name_ref),
};
sink(file_id, reference)
}
Some(NameRefClass::Definition(def)) if self.include_self_kw_refs.is_some() => {
if self.include_self_kw_refs == def_to_ty(self.sema, &def) {
let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::NameRef(name_ref.clone()),
category: ReferenceCategory::new(self.sema, &def, name_ref),
};
sink(file_id, reference)
} else {
false
}
}
Some(NameRefClass::FieldShorthand { local_ref: local, field_ref: field }) => {
let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax());
let field = Definition::Field(field);
let local = Definition::Local(local);
let access = match self.def {
Definition::Field(_) if field == self.def => {
ReferenceCategory::new(self.sema, &field, name_ref)
}
Definition::Local(_) if local == self.def => {
ReferenceCategory::new(self.sema, &local, name_ref)
}
_ => return false,
};
let reference = FileReference {
range,
name: FileReferenceNode::NameRef(name_ref.clone()),
category: access,
};
sink(file_id, reference)
}
_ => false,
}
}
fn found_name(
&self,
name: &ast::Name,
sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool,
) -> bool {
match NameClass::classify(self.sema, name) {
Some(NameClass::PatFieldShorthand { local_def: _, field_ref })
if matches!(
self.def, Definition::Field(_) if Definition::Field(field_ref) == self.def
) =>
{
let FileRange { file_id, range } = self.sema.original_range(name.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::Name(name.clone()),
// FIXME: mutable patterns should have `Write` access
category: ReferenceCategory::READ,
};
sink(file_id, reference)
}
Some(NameClass::ConstReference(def)) if self.def == def => {
let FileRange { file_id, range } = self.sema.original_range(name.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::Name(name.clone()),
category: ReferenceCategory::empty(),
};
sink(file_id, reference)
}
Some(NameClass::Definition(def)) if def != self.def => {
match (&self.assoc_item_container, self.def) {
// for type aliases we always want to reference the trait def and all the trait impl counterparts
// FIXME: only until we can resolve them correctly, see FIXME above
(Some(_), Definition::TypeAlias(_))
if convert_to_def_in_trait(self.sema.db, def)
!= convert_to_def_in_trait(self.sema.db, self.def) =>
{
return false
}
(Some(_), Definition::TypeAlias(_)) => {}
// We looking at an assoc item of a trait definition, so reference all the
// corresponding assoc items belonging to this trait's trait implementations
(Some(hir::AssocItemContainer::Trait(_)), _)
if convert_to_def_in_trait(self.sema.db, def) == self.def => {}
_ => return false,
}
let FileRange { file_id, range } = self.sema.original_range(name.syntax());
let reference = FileReference {
range,
name: FileReferenceNode::Name(name.clone()),
category: ReferenceCategory::empty(),
};
sink(file_id, reference)
}
_ => false,
}
}
}
fn def_to_ty(sema: &Semantics<'_, RootDatabase>, def: &Definition) -> Option<hir::Type> {
match def {
Definition::Adt(adt) => Some(adt.ty(sema.db)),
Definition::TypeAlias(it) => Some(it.ty(sema.db)),
Definition::BuiltinType(it) => Some(it.ty(sema.db)),
Definition::SelfType(it) => Some(it.self_ty(sema.db)),
_ => None,
}
}
impl ReferenceCategory {
fn new(
sema: &Semantics<'_, RootDatabase>,
def: &Definition,
r: &ast::NameRef,
) -> ReferenceCategory {
let mut result = ReferenceCategory::empty();
if is_name_ref_in_test(sema, r) {
result |= ReferenceCategory::TEST;
}
// Only Locals and Fields have accesses for now.
if !matches!(def, Definition::Local(_) | Definition::Field(_)) {
if is_name_ref_in_import(r) {
result |= ReferenceCategory::IMPORT;
}
return result;
}
let mode = r.syntax().ancestors().find_map(|node| {
match_ast! {
match node {
ast::BinExpr(expr) => {
if matches!(expr.op_kind()?, ast::BinaryOp::Assignment { .. }) {
// If the variable or field ends on the LHS's end then it's a Write
// (covers fields and locals). FIXME: This is not terribly accurate.
if let Some(lhs) = expr.lhs() {
if lhs.syntax().text_range().end() == r.syntax().text_range().end() {
return Some(ReferenceCategory::WRITE)
}
}
}
Some(ReferenceCategory::READ)
},
_ => None,
}
}
}).unwrap_or(ReferenceCategory::READ);
result | mode
}
}
fn is_name_ref_in_import(name_ref: &ast::NameRef) -> bool {
name_ref
.syntax()
.parent()
.and_then(ast::PathSegment::cast)
.and_then(|it| it.parent_path().top_path().syntax().parent())
.map_or(false, |it| it.kind() == SyntaxKind::USE_TREE)
}
fn is_name_ref_in_test(sema: &Semantics<'_, RootDatabase>, name_ref: &ast::NameRef) -> bool {
name_ref.syntax().ancestors().any(|node| match ast::Fn::cast(node) {
Some(it) => sema.to_def(&it).map_or(false, |func| func.is_test(sema.db)),
None => false,
})
}