//! Implementation of find-usages functionality. //! //! It is based on the standard ide trick: first, we run a fast text search to //! get a super-set of matches. Then, we confirm each match using precise //! name resolution. use std::mem; use std::{cell::LazyCell, cmp::Reverse}; use base_db::{salsa::Database, SourceDatabase, SourceRootDatabase}; use hir::{ sym, Adt, AsAssocItem, DefWithBody, FileRange, FileRangeWrapper, HasAttrs, HasContainer, HasSource, HirFileIdExt, InFile, InFileWrapper, InRealFile, ItemContainer, ModuleSource, PathResolution, Semantics, Visibility, }; use memchr::memmem::Finder; use parser::SyntaxKind; use rustc_hash::{FxHashMap, FxHashSet}; use span::EditionedFileId; use syntax::{ ast::{self, HasName}, match_ast, AstNode, AstToken, SmolStr, SyntaxElement, SyntaxNode, TextRange, TextSize, ToSmolStr, }; use triomphe::Arc; use crate::{ defs::{Definition, NameClass, NameRefClass}, traits::{as_trait_assoc_def, convert_to_def_in_trait}, RootDatabase, }; #[derive(Debug, Default, Clone)] pub struct UsageSearchResult { pub references: FxHashMap>, } impl UsageSearchResult { pub fn is_empty(&self) -> bool { self.references.is_empty() } pub fn len(&self) -> usize { self.references.len() } pub fn iter(&self) -> impl Iterator + '_ { self.references.iter().map(|(&file_id, refs)| (file_id, &**refs)) } pub fn file_ranges(&self) -> impl Iterator + '_ { self.references.iter().flat_map(|(&file_id, refs)| { refs.iter().map(move |&FileReference { range, .. }| FileRange { file_id, range }) }) } } impl IntoIterator for UsageSearchResult { type Item = (EditionedFileId, Vec); type IntoIter = > as IntoIterator>::IntoIter; fn into_iter(self) -> Self::IntoIter { self.references.into_iter() } } #[derive(Debug, Clone)] pub struct FileReference { /// The range of the reference in the original file pub range: TextRange, /// The node of the reference in the (macro-)file pub name: FileReferenceNode, pub category: ReferenceCategory, } #[derive(Debug, Clone)] pub enum FileReferenceNode { Name(ast::Name), NameRef(ast::NameRef), Lifetime(ast::Lifetime), FormatStringEntry(ast::String, TextRange), } impl FileReferenceNode { pub fn text_range(&self) -> TextRange { match self { FileReferenceNode::Name(it) => it.syntax().text_range(), FileReferenceNode::NameRef(it) => it.syntax().text_range(), FileReferenceNode::Lifetime(it) => it.syntax().text_range(), FileReferenceNode::FormatStringEntry(_, range) => *range, } } pub fn syntax(&self) -> SyntaxElement { match self { FileReferenceNode::Name(it) => it.syntax().clone().into(), FileReferenceNode::NameRef(it) => it.syntax().clone().into(), FileReferenceNode::Lifetime(it) => it.syntax().clone().into(), FileReferenceNode::FormatStringEntry(it, _) => it.syntax().clone().into(), } } pub fn into_name_like(self) -> Option { match self { FileReferenceNode::Name(it) => Some(ast::NameLike::Name(it)), FileReferenceNode::NameRef(it) => Some(ast::NameLike::NameRef(it)), FileReferenceNode::Lifetime(it) => Some(ast::NameLike::Lifetime(it)), FileReferenceNode::FormatStringEntry(_, _) => None, } } pub fn as_name_ref(&self) -> Option<&ast::NameRef> { match self { FileReferenceNode::NameRef(name_ref) => Some(name_ref), _ => None, } } pub fn as_lifetime(&self) -> Option<&ast::Lifetime> { match self { FileReferenceNode::Lifetime(lifetime) => Some(lifetime), _ => None, } } pub fn text(&self) -> syntax::TokenText<'_> { match self { FileReferenceNode::NameRef(name_ref) => name_ref.text(), FileReferenceNode::Name(name) => name.text(), FileReferenceNode::Lifetime(lifetime) => lifetime.text(), FileReferenceNode::FormatStringEntry(it, range) => { syntax::TokenText::borrowed(&it.text()[*range - it.syntax().text_range().start()]) } } } } bitflags::bitflags! { #[derive(Copy, Clone, Default, PartialEq, Eq, Hash, Debug)] pub struct ReferenceCategory: u8 { // FIXME: Add this variant and delete the `retain_adt_literal_usages` function. // const CREATE = 1 << 0; const WRITE = 1 << 0; const READ = 1 << 1; const IMPORT = 1 << 2; const TEST = 1 << 3; } } /// Generally, `search_scope` returns files that might contain references for the element. /// For `pub(crate)` things it's a crate, for `pub` things it's a crate and dependant crates. /// In some cases, the location of the references is known to within a `TextRange`, /// e.g. for things like local variables. #[derive(Clone, Debug)] pub struct SearchScope { entries: FxHashMap>, } impl SearchScope { fn new(entries: FxHashMap>) -> SearchScope { SearchScope { entries } } /// Build a search scope spanning the entire crate graph of files. fn crate_graph(db: &RootDatabase) -> SearchScope { let mut entries = FxHashMap::default(); let graph = db.crate_graph(); for krate in graph.iter() { let root_file = graph[krate].root_file_id; let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); entries.extend( source_root.iter().map(|id| (EditionedFileId::new(id, graph[krate].edition), None)), ); } SearchScope { entries } } /// Build a search scope spanning all the reverse dependencies of the given crate. fn reverse_dependencies(db: &RootDatabase, of: hir::Crate) -> SearchScope { let mut entries = FxHashMap::default(); for rev_dep in of.transitive_reverse_dependencies(db) { let root_file = rev_dep.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); entries.extend( source_root.iter().map(|id| (EditionedFileId::new(id, rev_dep.edition(db)), None)), ); } SearchScope { entries } } /// Build a search scope spanning the given crate. fn krate(db: &RootDatabase, of: hir::Crate) -> SearchScope { let root_file = of.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); SearchScope { entries: source_root .iter() .map(|id| (EditionedFileId::new(id, of.edition(db)), None)) .collect(), } } /// Build a search scope spanning the given module and all its submodules. pub fn module_and_children(db: &RootDatabase, module: hir::Module) -> SearchScope { let mut entries = FxHashMap::default(); let (file_id, range) = { let InFile { file_id, value } = module.definition_source_range(db); if let Some(InRealFile { file_id, value: call_source }) = file_id.original_call_node(db) { (file_id, Some(call_source.text_range())) } else { (file_id.original_file(db), Some(value)) } }; entries.entry(file_id).or_insert(range); let mut to_visit: Vec<_> = module.children(db).collect(); while let Some(module) = to_visit.pop() { if let Some(file_id) = module.as_source_file_id(db) { entries.insert(file_id, None); } to_visit.extend(module.children(db)); } SearchScope { entries } } /// Build an empty search scope. pub fn empty() -> SearchScope { SearchScope::new(FxHashMap::default()) } /// Build a empty search scope spanning the given file. pub fn single_file(file: EditionedFileId) -> SearchScope { SearchScope::new(std::iter::once((file, None)).collect()) } /// Build a empty search scope spanning the text range of the given file. pub fn file_range(range: FileRange) -> SearchScope { SearchScope::new(std::iter::once((range.file_id, Some(range.range))).collect()) } /// Build a empty search scope spanning the given files. pub fn files(files: &[EditionedFileId]) -> SearchScope { SearchScope::new(files.iter().map(|f| (*f, None)).collect()) } pub fn intersection(&self, other: &SearchScope) -> SearchScope { let (mut small, mut large) = (&self.entries, &other.entries); if small.len() > large.len() { mem::swap(&mut small, &mut large) } let intersect_ranges = |r1: Option, r2: Option| -> Option> { match (r1, r2) { (None, r) | (r, None) => Some(r), (Some(r1), Some(r2)) => r1.intersect(r2).map(Some), } }; let res = small .iter() .filter_map(|(&file_id, &r1)| { let &r2 = large.get(&file_id)?; let r = intersect_ranges(r1, r2)?; Some((file_id, r)) }) .collect(); SearchScope::new(res) } } impl IntoIterator for SearchScope { type Item = (EditionedFileId, Option); type IntoIter = std::collections::hash_map::IntoIter>; fn into_iter(self) -> Self::IntoIter { self.entries.into_iter() } } impl Definition { fn search_scope(&self, db: &RootDatabase) -> SearchScope { let _p = tracing::info_span!("search_scope").entered(); if let Definition::BuiltinType(_) = self { return SearchScope::crate_graph(db); } // def is crate root if let &Definition::Module(module) = self { if module.is_crate_root() { return SearchScope::reverse_dependencies(db, module.krate()); } } let module = match self.module(db) { Some(it) => it, None => return SearchScope::empty(), }; let InFile { file_id, value: module_source } = module.definition_source(db); let file_id = file_id.original_file(db); if let Definition::Local(var) = self { let def = match var.parent(db) { DefWithBody::Function(f) => f.source(db).map(|src| src.syntax().cloned()), DefWithBody::Const(c) => c.source(db).map(|src| src.syntax().cloned()), DefWithBody::Static(s) => s.source(db).map(|src| src.syntax().cloned()), DefWithBody::Variant(v) => v.source(db).map(|src| src.syntax().cloned()), // FIXME: implement DefWithBody::InTypeConst(_) => return SearchScope::empty(), }; return match def { Some(def) => SearchScope::file_range( def.as_ref().original_file_range_with_macro_call_body(db), ), None => SearchScope::single_file(file_id), }; } if let Definition::SelfType(impl_) = self { return match impl_.source(db).map(|src| src.syntax().cloned()) { Some(def) => SearchScope::file_range( def.as_ref().original_file_range_with_macro_call_body(db), ), None => SearchScope::single_file(file_id), }; } if let Definition::GenericParam(hir::GenericParam::LifetimeParam(param)) = self { let def = match param.parent(db) { hir::GenericDef::Function(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Adt(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Trait(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::TraitAlias(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::TypeAlias(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Impl(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Const(it) => it.source(db).map(|src| src.syntax().cloned()), }; return match def { Some(def) => SearchScope::file_range( def.as_ref().original_file_range_with_macro_call_body(db), ), None => SearchScope::single_file(file_id), }; } if let Definition::Macro(macro_def) = self { return match macro_def.kind(db) { hir::MacroKind::Declarative => { if macro_def.attrs(db).by_key(&sym::macro_export).exists() { SearchScope::reverse_dependencies(db, module.krate()) } else { SearchScope::krate(db, module.krate()) } } hir::MacroKind::BuiltIn => SearchScope::crate_graph(db), hir::MacroKind::Derive | hir::MacroKind::Attr | hir::MacroKind::ProcMacro => { SearchScope::reverse_dependencies(db, module.krate()) } }; } if let Definition::DeriveHelper(_) = self { return SearchScope::reverse_dependencies(db, module.krate()); } let vis = self.visibility(db); if let Some(Visibility::Public) = vis { return SearchScope::reverse_dependencies(db, module.krate()); } if let Some(Visibility::Module(module, _)) = vis { return SearchScope::module_and_children(db, module.into()); } let range = match module_source { ModuleSource::Module(m) => Some(m.syntax().text_range()), ModuleSource::BlockExpr(b) => Some(b.syntax().text_range()), ModuleSource::SourceFile(_) => None, }; match range { Some(range) => SearchScope::file_range(FileRange { file_id, range }), None => SearchScope::single_file(file_id), } } pub fn usages<'a>(self, sema: &'a Semantics<'_, RootDatabase>) -> FindUsages<'a> { FindUsages { def: self, assoc_item_container: self.as_assoc_item(sema.db).map(|a| a.container(sema.db)), sema, scope: None, include_self_kw_refs: None, search_self_mod: false, } } } #[derive(Clone)] pub struct FindUsages<'a> { def: Definition, sema: &'a Semantics<'a, RootDatabase>, scope: Option<&'a SearchScope>, /// The container of our definition should it be an assoc item assoc_item_container: Option, /// whether to search for the `Self` type of the definition include_self_kw_refs: Option, /// whether to search for the `self` module search_self_mod: bool, } impl<'a> FindUsages<'a> { /// Enable searching for `Self` when the definition is a type or `self` for modules. pub fn include_self_refs(mut self) -> Self { self.include_self_kw_refs = def_to_ty(self.sema, &self.def); self.search_self_mod = true; self } /// Limit the search to a given [`SearchScope`]. pub fn in_scope(self, scope: &'a SearchScope) -> Self { self.set_scope(Some(scope)) } /// Limit the search to a given [`SearchScope`]. pub fn set_scope(mut self, scope: Option<&'a SearchScope>) -> Self { assert!(self.scope.is_none()); self.scope = scope; self } pub fn at_least_one(&self) -> bool { let mut found = false; self.search(&mut |_, _| { found = true; true }); found } pub fn all(self) -> UsageSearchResult { let mut res = UsageSearchResult::default(); self.search(&mut |file_id, reference| { res.references.entry(file_id).or_default().push(reference); false }); res } fn scope_files<'b>( db: &'b RootDatabase, scope: &'b SearchScope, ) -> impl Iterator, EditionedFileId, TextRange)> + 'b { scope.entries.iter().map(|(&file_id, &search_range)| { let text = db.file_text(file_id.file_id()); let search_range = search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(&*text))); (text, file_id, search_range) }) } fn match_indices<'b>( text: &'b str, finder: &'b Finder<'b>, search_range: TextRange, ) -> impl Iterator + 'b { finder.find_iter(text.as_bytes()).filter_map(move |idx| { let offset: TextSize = idx.try_into().unwrap(); if !search_range.contains_inclusive(offset) { return None; } // If this is not a word boundary, that means this is only part of an identifier, // so it can't be what we're looking for. // This speeds up short identifiers significantly. if text[..idx] .chars() .next_back() .is_some_and(|ch| matches!(ch, 'A'..='Z' | 'a'..='z' | '_')) || text[idx + finder.needle().len()..] .chars() .next() .is_some_and(|ch| matches!(ch, 'A'..='Z' | 'a'..='z' | '_' | '0'..='9')) { return None; } Some(offset) }) } fn find_nodes<'b>( sema: &'b Semantics<'_, RootDatabase>, name: &str, node: &syntax::SyntaxNode, offset: TextSize, ) -> impl Iterator + 'b { node.token_at_offset(offset) .find(|it| { // `name` is stripped of raw ident prefix. See the comment on name retrieval below. it.text().trim_start_matches("r#") == name }) .into_iter() .flat_map(move |token| { sema.descend_into_macros_exact_if_in_macro(token) .into_iter() .filter_map(|it| it.parent()) }) } /// Performs a special fast search for associated functions. This is mainly intended /// to speed up `new()` which can take a long time. /// /// The trick is instead of searching for `func_name` search for `TypeThatContainsContainerName::func_name`. /// We cannot search exactly that (not even in tokens), because `ContainerName` may be aliased. /// Instead, we perform a textual search for `ContainerName`. Then, we look for all cases where /// `ContainerName` may be aliased (that includes `use ContainerName as Xyz` and /// `type Xyz = ContainerName`). We collect a list of all possible aliases of `ContainerName`. /// The list can have false positives (because there may be multiple types named `ContainerName`), /// but it cannot have false negatives. Then, we look for `TypeThatContainsContainerNameOrAnyAlias::func_name`. /// Those that will be found are of high chance to be actual hits (of course, we will need to verify /// that). /// /// Returns true if completed the search. // FIXME: Extend this to other cases, such as associated types/consts/enum variants (note those can be `use`d). fn short_associated_function_fast_search( &self, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, search_scope: &SearchScope, name: &str, ) -> bool { if self.scope.is_some() { return false; } let _p = tracing::info_span!("short_associated_function_fast_search").entered(); let container = (|| { let Definition::Function(function) = self.def else { return None; }; if function.has_self_param(self.sema.db) { return None; } match function.container(self.sema.db) { // Only freestanding `impl`s qualify; methods from trait // can be called from within subtraits and bounds. ItemContainer::Impl(impl_) => { let has_trait = impl_.trait_(self.sema.db).is_some(); if has_trait { return None; } let adt = impl_.self_ty(self.sema.db).as_adt()?; Some(adt) } _ => None, } })(); let Some(container) = container else { return false; }; fn has_any_name(node: &SyntaxNode, mut predicate: impl FnMut(&str) -> bool) -> bool { node.descendants().any(|node| { match_ast! { match node { ast::Name(it) => predicate(it.text().trim_start_matches("r#")), ast::NameRef(it) => predicate(it.text().trim_start_matches("r#")), _ => false } } }) } // This is a fixpoint algorithm with O(number of aliases), but most types have no or few aliases, // so this should stay fast. // /// Returns `(aliases, ranges_where_Self_can_refer_to_our_type)`. fn collect_possible_aliases( sema: &Semantics<'_, RootDatabase>, container: Adt, ) -> Option<(FxHashSet, Vec>)> { fn insert_type_alias( db: &RootDatabase, to_process: &mut Vec<(SmolStr, SearchScope)>, alias_name: &str, def: Definition, ) { let alias = alias_name.trim_start_matches("r#").to_smolstr(); tracing::debug!("found alias: {alias}"); to_process.push((alias, def.search_scope(db))); } let _p = tracing::info_span!("collect_possible_aliases").entered(); let db = sema.db; let container_name = container.name(db).unescaped().display(db).to_smolstr(); let search_scope = Definition::from(container).search_scope(db); let mut seen = FxHashSet::default(); let mut completed = FxHashSet::default(); let mut to_process = vec![(container_name, search_scope)]; let mut is_possibly_self = Vec::new(); let mut total_files_searched = 0; while let Some((current_to_process, current_to_process_search_scope)) = to_process.pop() { let is_alias = |alias: &ast::TypeAlias| { let def = sema.to_def(alias)?; let ty = def.ty(db); let is_alias = ty.as_adt()? == container; is_alias.then_some(def) }; let finder = Finder::new(current_to_process.as_bytes()); for (file_text, file_id, search_range) in FindUsages::scope_files(db, ¤t_to_process_search_scope) { let tree = LazyCell::new(move || sema.parse(file_id).syntax().clone()); for offset in FindUsages::match_indices(&file_text, &finder, search_range) { let usages = FindUsages::find_nodes(sema, ¤t_to_process, &tree, offset) .filter(|it| { matches!(it.kind(), SyntaxKind::NAME | SyntaxKind::NAME_REF) }); for usage in usages { if let Some(alias) = usage.parent().and_then(|it| { let path = ast::PathSegment::cast(it)?.parent_path(); let use_tree = ast::UseTree::cast(path.syntax().parent()?)?; use_tree.rename()?.name() }) { if seen.insert(InFileWrapper::new( file_id, alias.syntax().text_range(), )) { tracing::debug!("found alias: {alias}"); cov_mark::hit!(container_use_rename); // FIXME: `use`s have no easy way to determine their search scope, but they are rare. to_process.push(( alias.text().to_smolstr(), current_to_process_search_scope.clone(), )); } } else if let Some(alias) = usage.ancestors().find_map(ast::TypeAlias::cast) { if let Some(name) = alias.name() { if seen.insert(InFileWrapper::new( file_id, name.syntax().text_range(), )) { if let Some(def) = is_alias(&alias) { cov_mark::hit!(container_type_alias); insert_type_alias( sema.db, &mut to_process, name.text().as_str(), def.into(), ); } else { cov_mark::hit!(same_name_different_def_type_alias); } } } } // We need to account for `Self`. It can only refer to our type inside an impl. let impl_ = 'impl_: { for ancestor in usage.ancestors() { if let Some(parent) = ancestor.parent() { if let Some(parent) = ast::Impl::cast(parent) { // Only if the GENERIC_PARAM_LIST is directly under impl, otherwise it may be in the self ty. if matches!( ancestor.kind(), SyntaxKind::ASSOC_ITEM_LIST | SyntaxKind::WHERE_CLAUSE | SyntaxKind::GENERIC_PARAM_LIST ) { break; } if parent .trait_() .is_some_and(|trait_| *trait_.syntax() == ancestor) { break; } // Otherwise, found an impl where its self ty may be our type. break 'impl_ Some(parent); } } } None }; (|| { let impl_ = impl_?; is_possibly_self.push(sema.original_range(impl_.syntax())); let assoc_items = impl_.assoc_item_list()?; let type_aliases = assoc_items .syntax() .descendants() .filter_map(ast::TypeAlias::cast); for type_alias in type_aliases { let Some(ty) = type_alias.ty() else { continue }; let Some(name) = type_alias.name() else { continue }; let contains_self = ty .syntax() .descendants_with_tokens() .any(|node| node.kind() == SyntaxKind::SELF_TYPE_KW); if !contains_self { continue; } if seen.insert(InFileWrapper::new( file_id, name.syntax().text_range(), )) { if let Some(def) = is_alias(&type_alias) { cov_mark::hit!(self_type_alias); insert_type_alias( sema.db, &mut to_process, name.text().as_str(), def.into(), ); } else { cov_mark::hit!(same_name_different_def_type_alias); } } } Some(()) })(); } } } completed.insert(current_to_process); total_files_searched += current_to_process_search_scope.entries.len(); // FIXME: Maybe this needs to be relative to the project size, or at least to the initial search scope? if total_files_searched > 20_000 && completed.len() > 100 { // This case is extremely unlikely (even searching for `Vec::new()` on rust-analyzer does not enter // here - it searches less than 10,000 files, and it does so in five seconds), but if we get here, // we at a risk of entering an almost-infinite loop of growing the aliases list. So just stop and // let normal search handle this case. tracing::info!(aliases_count = %completed.len(), "too much aliases; leaving fast path"); return None; } } // Impls can contain each other, so we need to deduplicate their ranges. is_possibly_self.sort_unstable_by_key(|position| { (position.file_id, position.range.start(), Reverse(position.range.end())) }); is_possibly_self.dedup_by(|pos2, pos1| { pos1.file_id == pos2.file_id && pos1.range.start() <= pos2.range.start() && pos1.range.end() >= pos2.range.end() }); tracing::info!(aliases_count = %completed.len(), "aliases search completed"); Some((completed, is_possibly_self)) } fn search( this: &FindUsages<'_>, finder: &Finder<'_>, name: &str, files: impl Iterator, EditionedFileId, TextRange)>, mut container_predicate: impl FnMut( &SyntaxNode, InFileWrapper, ) -> bool, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) { for (file_text, file_id, search_range) in files { let tree = LazyCell::new(move || this.sema.parse(file_id).syntax().clone()); for offset in FindUsages::match_indices(&file_text, finder, search_range) { let usages = FindUsages::find_nodes(this.sema, name, &tree, offset) .filter_map(ast::NameRef::cast); for usage in usages { let found_usage = usage .syntax() .parent() .and_then(ast::PathSegment::cast) .map(|path_segment| { container_predicate( path_segment.parent_path().syntax(), InFileWrapper::new(file_id, usage.syntax().text_range()), ) }) .unwrap_or(false); if found_usage { this.found_name_ref(&usage, sink); } } } } } let Some((container_possible_aliases, is_possibly_self)) = collect_possible_aliases(self.sema, container) else { return false; }; cov_mark::hit!(short_associated_function_fast_search); // FIXME: If Rust ever gains the ability to `use Struct::method` we'll also need to account for free // functions. let finder = Finder::new(name.as_bytes()); // The search for `Self` may return duplicate results with `ContainerName`, so deduplicate them. let mut self_positions = FxHashSet::default(); tracing::info_span!("Self_search").in_scope(|| { search( self, &finder, name, is_possibly_self.into_iter().map(|position| { ( self.sema.db.file_text(position.file_id.file_id()), position.file_id, position.range, ) }), |path, name_position| { let has_self = path .descendants_with_tokens() .any(|node| node.kind() == SyntaxKind::SELF_TYPE_KW); if has_self { self_positions.insert(name_position); } has_self }, sink, ) }); tracing::info_span!("aliases_search").in_scope(|| { search( self, &finder, name, FindUsages::scope_files(self.sema.db, search_scope), |path, name_position| { has_any_name(path, |name| container_possible_aliases.contains(name)) && !self_positions.contains(&name_position) }, sink, ) }); true } pub fn search(&self, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool) { let _p = tracing::info_span!("FindUsages:search").entered(); let sema = self.sema; let search_scope = { // FIXME: Is the trait scope needed for trait impl assoc items? let base = as_trait_assoc_def(sema.db, self.def).unwrap_or(self.def).search_scope(sema.db); match &self.scope { None => base, Some(scope) => base.intersection(scope), } }; let name = match self.def { // special case crate modules as these do not have a proper name Definition::Module(module) if module.is_crate_root() => { // FIXME: This assumes the crate name is always equal to its display name when it // really isn't // we should instead look at the dependency edge name and recursively search our way // up the ancestors module .krate() .display_name(self.sema.db) .map(|crate_name| crate_name.crate_name().symbol().as_str().into()) } _ => { let self_kw_refs = || { self.include_self_kw_refs.as_ref().and_then(|ty| { ty.as_adt() .map(|adt| adt.name(self.sema.db)) .or_else(|| ty.as_builtin().map(|builtin| builtin.name())) }) }; // We need to unescape the name in case it is written without "r#" in earlier // editions of Rust where it isn't a keyword. self.def .name(sema.db) .or_else(self_kw_refs) .map(|it| it.unescaped().display(sema.db).to_smolstr()) } }; let name = match &name { Some(s) => s.as_str(), None => return, }; // FIXME: This should probably depend on the number of the results (specifically, the number of false results). if name.len() <= 7 && self.short_associated_function_fast_search(sink, &search_scope, name) { return; } let finder = &Finder::new(name); let include_self_kw_refs = self.include_self_kw_refs.as_ref().map(|ty| (ty, Finder::new("Self"))); for (text, file_id, search_range) in Self::scope_files(sema.db, &search_scope) { self.sema.db.unwind_if_cancelled(); let tree = LazyCell::new(move || sema.parse(file_id).syntax().clone()); // Search for occurrences of the items name for offset in Self::match_indices(&text, finder, search_range) { tree.token_at_offset(offset).for_each(|token| { let Some(str_token) = ast::String::cast(token.clone()) else { return }; if let Some((range, nameres)) = sema.check_for_format_args_template(token, offset) { if self.found_format_args_ref(file_id, range, str_token, nameres, sink) {} } }); for name in Self::find_nodes(sema, name, &tree, offset).filter_map(ast::NameLike::cast) { if match name { ast::NameLike::NameRef(name_ref) => self.found_name_ref(&name_ref, sink), ast::NameLike::Name(name) => self.found_name(&name, sink), ast::NameLike::Lifetime(lifetime) => self.found_lifetime(&lifetime, sink), } { return; } } } // Search for occurrences of the `Self` referring to our type if let Some((self_ty, finder)) = &include_self_kw_refs { for offset in Self::match_indices(&text, finder, search_range) { for name_ref in Self::find_nodes(sema, "Self", &tree, offset).filter_map(ast::NameRef::cast) { if self.found_self_ty_name_ref(self_ty, &name_ref, sink) { return; } } } } } // Search for `super` and `crate` resolving to our module if let Definition::Module(module) = self.def { let scope = search_scope.intersection(&SearchScope::module_and_children(self.sema.db, module)); let is_crate_root = module.is_crate_root().then(|| Finder::new("crate")); let finder = &Finder::new("super"); for (text, file_id, search_range) in Self::scope_files(sema.db, &scope) { self.sema.db.unwind_if_cancelled(); let tree = LazyCell::new(move || sema.parse(file_id).syntax().clone()); for offset in Self::match_indices(&text, finder, search_range) { for name_ref in Self::find_nodes(sema, "super", &tree, offset) .filter_map(ast::NameRef::cast) { if self.found_name_ref(&name_ref, sink) { return; } } } if let Some(finder) = &is_crate_root { for offset in Self::match_indices(&text, finder, search_range) { for name_ref in Self::find_nodes(sema, "crate", &tree, offset) .filter_map(ast::NameRef::cast) { if self.found_name_ref(&name_ref, sink) { return; } } } } } } // search for module `self` references in our module's definition source match self.def { Definition::Module(module) if self.search_self_mod => { let src = module.definition_source(sema.db); let file_id = src.file_id.original_file(sema.db); let (file_id, search_range) = match src.value { ModuleSource::Module(m) => (file_id, Some(m.syntax().text_range())), ModuleSource::BlockExpr(b) => (file_id, Some(b.syntax().text_range())), ModuleSource::SourceFile(_) => (file_id, None), }; let search_range = if let Some(&range) = search_scope.entries.get(&file_id) { match (range, search_range) { (None, range) | (range, None) => range, (Some(range), Some(search_range)) => match range.intersect(search_range) { Some(range) => Some(range), None => return, }, } } else { return; }; let text = sema.db.file_text(file_id.file_id()); let search_range = search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(&*text))); let tree = LazyCell::new(|| sema.parse(file_id).syntax().clone()); let finder = &Finder::new("self"); for offset in Self::match_indices(&text, finder, search_range) { for name_ref in Self::find_nodes(sema, "self", &tree, offset).filter_map(ast::NameRef::cast) { if self.found_self_module_name_ref(&name_ref, sink) { return; } } } } _ => {} } } fn found_self_ty_name_ref( &self, self_ty: &hir::Type, name_ref: &ast::NameRef, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) -> bool { // See https://github.com/rust-lang/rust-analyzer/pull/15864/files/e0276dc5ddc38c65240edb408522bb869f15afb4#r1389848845 let ty_eq = |ty: hir::Type| match (ty.as_adt(), self_ty.as_adt()) { (Some(ty), Some(self_ty)) => ty == self_ty, (None, None) => ty == *self_ty, _ => false, }; match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(Definition::SelfType(impl_))) if ty_eq(impl_.self_ty(self.sema.db)) => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: FileReferenceNode::NameRef(name_ref.clone()), category: ReferenceCategory::empty(), }; sink(file_id, reference) } _ => false, } } fn found_self_module_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(def @ Definition::Module(_))) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let category = if is_name_ref_in_import(name_ref) { ReferenceCategory::IMPORT } else { ReferenceCategory::empty() }; let reference = FileReference { range, name: FileReferenceNode::NameRef(name_ref.clone()), category, }; sink(file_id, reference) } _ => false, } } fn found_format_args_ref( &self, file_id: EditionedFileId, range: TextRange, token: ast::String, res: Option, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) -> bool { match res.map(Definition::from) { Some(def) if def == self.def => { let reference = FileReference { range, name: FileReferenceNode::FormatStringEntry(token, range), category: ReferenceCategory::READ, }; sink(file_id, reference) } _ => false, } } fn found_lifetime( &self, lifetime: &ast::Lifetime, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify_lifetime(self.sema, lifetime) { Some(NameRefClass::Definition(def)) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(lifetime.syntax()); let reference = FileReference { range, name: FileReferenceNode::Lifetime(lifetime.clone()), category: ReferenceCategory::empty(), }; sink(file_id, reference) } _ => false, } } fn found_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(def)) if self.def == def // is our def a trait assoc item? then we want to find all assoc items from trait impls of our trait || matches!(self.assoc_item_container, Some(hir::AssocItemContainer::Trait(_))) && convert_to_def_in_trait(self.sema.db, def) == self.def => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: FileReferenceNode::NameRef(name_ref.clone()), category: ReferenceCategory::new(self.sema, &def, name_ref), }; sink(file_id, reference) } // FIXME: special case type aliases, we can't filter between impl and trait defs here as we lack the substitutions // so we always resolve all assoc type aliases to both their trait def and impl defs Some(NameRefClass::Definition(def)) if self.assoc_item_container.is_some() && matches!(self.def, Definition::TypeAlias(_)) && convert_to_def_in_trait(self.sema.db, def) == convert_to_def_in_trait(self.sema.db, self.def) => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: FileReferenceNode::NameRef(name_ref.clone()), category: ReferenceCategory::new(self.sema, &def, name_ref), }; sink(file_id, reference) } Some(NameRefClass::Definition(def)) if self.include_self_kw_refs.is_some() => { if self.include_self_kw_refs == def_to_ty(self.sema, &def) { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: FileReferenceNode::NameRef(name_ref.clone()), category: ReferenceCategory::new(self.sema, &def, name_ref), }; sink(file_id, reference) } else { false } } Some(NameRefClass::FieldShorthand { local_ref: local, field_ref: field }) => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let field = Definition::Field(field); let local = Definition::Local(local); let access = match self.def { Definition::Field(_) if field == self.def => { ReferenceCategory::new(self.sema, &field, name_ref) } Definition::Local(_) if local == self.def => { ReferenceCategory::new(self.sema, &local, name_ref) } _ => return false, }; let reference = FileReference { range, name: FileReferenceNode::NameRef(name_ref.clone()), category: access, }; sink(file_id, reference) } _ => false, } } fn found_name( &self, name: &ast::Name, sink: &mut dyn FnMut(EditionedFileId, FileReference) -> bool, ) -> bool { match NameClass::classify(self.sema, name) { Some(NameClass::PatFieldShorthand { local_def: _, field_ref }) if matches!( self.def, Definition::Field(_) if Definition::Field(field_ref) == self.def ) => { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: FileReferenceNode::Name(name.clone()), // FIXME: mutable patterns should have `Write` access category: ReferenceCategory::READ, }; sink(file_id, reference) } Some(NameClass::ConstReference(def)) if self.def == def => { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: FileReferenceNode::Name(name.clone()), category: ReferenceCategory::empty(), }; sink(file_id, reference) } Some(NameClass::Definition(def)) if def != self.def => { match (&self.assoc_item_container, self.def) { // for type aliases we always want to reference the trait def and all the trait impl counterparts // FIXME: only until we can resolve them correctly, see FIXME above (Some(_), Definition::TypeAlias(_)) if convert_to_def_in_trait(self.sema.db, def) != convert_to_def_in_trait(self.sema.db, self.def) => { return false } (Some(_), Definition::TypeAlias(_)) => {} // We looking at an assoc item of a trait definition, so reference all the // corresponding assoc items belonging to this trait's trait implementations (Some(hir::AssocItemContainer::Trait(_)), _) if convert_to_def_in_trait(self.sema.db, def) == self.def => {} _ => return false, } let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: FileReferenceNode::Name(name.clone()), category: ReferenceCategory::empty(), }; sink(file_id, reference) } _ => false, } } } fn def_to_ty(sema: &Semantics<'_, RootDatabase>, def: &Definition) -> Option { match def { Definition::Adt(adt) => Some(adt.ty(sema.db)), Definition::TypeAlias(it) => Some(it.ty(sema.db)), Definition::BuiltinType(it) => Some(it.ty(sema.db)), Definition::SelfType(it) => Some(it.self_ty(sema.db)), _ => None, } } impl ReferenceCategory { fn new( sema: &Semantics<'_, RootDatabase>, def: &Definition, r: &ast::NameRef, ) -> ReferenceCategory { let mut result = ReferenceCategory::empty(); if is_name_ref_in_test(sema, r) { result |= ReferenceCategory::TEST; } // Only Locals and Fields have accesses for now. if !matches!(def, Definition::Local(_) | Definition::Field(_)) { if is_name_ref_in_import(r) { result |= ReferenceCategory::IMPORT; } return result; } let mode = r.syntax().ancestors().find_map(|node| { match_ast! { match node { ast::BinExpr(expr) => { if matches!(expr.op_kind()?, ast::BinaryOp::Assignment { .. }) { // If the variable or field ends on the LHS's end then it's a Write // (covers fields and locals). FIXME: This is not terribly accurate. if let Some(lhs) = expr.lhs() { if lhs.syntax().text_range().end() == r.syntax().text_range().end() { return Some(ReferenceCategory::WRITE) } } } Some(ReferenceCategory::READ) }, _ => None, } } }).unwrap_or(ReferenceCategory::READ); result | mode } } fn is_name_ref_in_import(name_ref: &ast::NameRef) -> bool { name_ref .syntax() .parent() .and_then(ast::PathSegment::cast) .and_then(|it| it.parent_path().top_path().syntax().parent()) .map_or(false, |it| it.kind() == SyntaxKind::USE_TREE) } fn is_name_ref_in_test(sema: &Semantics<'_, RootDatabase>, name_ref: &ast::NameRef) -> bool { name_ref.syntax().ancestors().any(|node| match ast::Fn::cast(node) { Some(it) => sema.to_def(&it).map_or(false, |func| func.is_test(sema.db)), None => false, }) }