mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-10 04:08:47 +00:00
705 lines
24 KiB
Rust
705 lines
24 KiB
Rust
//! This module implements import-resolution/macro expansion algorithm.
|
|
//!
|
|
//! The result of this module is `DefMap`: a data structure which contains:
|
|
//!
|
|
//! * a tree of modules for the crate
|
|
//! * for each module, a set of items visible in the module (directly declared
|
|
//! or imported)
|
|
//!
|
|
//! Note that `DefMap` contains fully macro expanded code.
|
|
//!
|
|
//! Computing `DefMap` can be partitioned into several logically
|
|
//! independent "phases". The phases are mutually recursive though, there's no
|
|
//! strict ordering.
|
|
//!
|
|
//! ## Collecting RawItems
|
|
//!
|
|
//! This happens in the `raw` module, which parses a single source file into a
|
|
//! set of top-level items. Nested imports are desugared to flat imports in this
|
|
//! phase. Macro calls are represented as a triple of (Path, Option<Name>,
|
|
//! TokenTree).
|
|
//!
|
|
//! ## Collecting Modules
|
|
//!
|
|
//! This happens in the `collector` module. In this phase, we recursively walk
|
|
//! tree of modules, collect raw items from submodules, populate module scopes
|
|
//! with defined items (so, we assign item ids in this phase) and record the set
|
|
//! of unresolved imports and macros.
|
|
//!
|
|
//! While we walk tree of modules, we also record macro_rules definitions and
|
|
//! expand calls to macro_rules defined macros.
|
|
//!
|
|
//! ## Resolving Imports
|
|
//!
|
|
//! We maintain a list of currently unresolved imports. On every iteration, we
|
|
//! try to resolve some imports from this list. If the import is resolved, we
|
|
//! record it, by adding an item to current module scope and, if necessary, by
|
|
//! recursively populating glob imports.
|
|
//!
|
|
//! ## Resolving Macros
|
|
//!
|
|
//! macro_rules from the same crate use a global mutable namespace. We expand
|
|
//! them immediately, when we collect modules.
|
|
//!
|
|
//! Macros from other crates (including proc-macros) can be used with
|
|
//! `foo::bar!` syntax. We handle them similarly to imports. There's a list of
|
|
//! unexpanded macros. On every iteration, we try to resolve each macro call
|
|
//! path and, upon success, we run macro expansion and "collect module" phase on
|
|
//! the result
|
|
|
|
pub mod attr_resolution;
|
|
pub mod proc_macro;
|
|
pub mod diagnostics;
|
|
mod collector;
|
|
mod mod_resolution;
|
|
mod path_resolution;
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
use std::{cmp::Ord, ops::Deref};
|
|
|
|
use base_db::{CrateId, Edition, FileId, ProcMacroKind};
|
|
use hir_expand::{name::Name, HirFileId, InFile, MacroCallId, MacroDefId};
|
|
use itertools::Itertools;
|
|
use la_arena::Arena;
|
|
use profile::Count;
|
|
use rustc_hash::{FxHashMap, FxHashSet};
|
|
use stdx::format_to;
|
|
use syntax::{ast, SmolStr};
|
|
use triomphe::Arc;
|
|
|
|
use crate::{
|
|
db::DefDatabase,
|
|
item_scope::{BuiltinShadowMode, ItemScope},
|
|
item_tree::{ItemTreeId, Mod, TreeId},
|
|
nameres::{diagnostics::DefDiagnostic, path_resolution::ResolveMode},
|
|
path::ModPath,
|
|
per_ns::PerNs,
|
|
visibility::Visibility,
|
|
AstId, BlockId, BlockLoc, CrateRootModuleId, FunctionId, LocalModuleId, Lookup, MacroExpander,
|
|
MacroId, ModuleId, ProcMacroId,
|
|
};
|
|
|
|
/// Contains the results of (early) name resolution.
|
|
///
|
|
/// A `DefMap` stores the module tree and the definitions that are in scope in every module after
|
|
/// item-level macros have been expanded.
|
|
///
|
|
/// Every crate has a primary `DefMap` whose root is the crate's main file (`main.rs`/`lib.rs`),
|
|
/// computed by the `crate_def_map` query. Additionally, every block expression introduces the
|
|
/// opportunity to write arbitrary item and module hierarchies, and thus gets its own `DefMap` that
|
|
/// is computed by the `block_def_map` query.
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct DefMap {
|
|
_c: Count<Self>,
|
|
/// When this is a block def map, this will hold the block id of the the block and module that
|
|
/// contains this block.
|
|
block: Option<BlockInfo>,
|
|
/// The modules and their data declared in this crate.
|
|
modules: Arena<ModuleData>,
|
|
krate: CrateId,
|
|
/// The prelude module for this crate. This either comes from an import
|
|
/// marked with the `prelude_import` attribute, or (in the normal case) from
|
|
/// a dependency (`std` or `core`).
|
|
/// The prelude is empty for non-block DefMaps (unless `#[prelude_import]` was used,
|
|
/// but that attribute is nightly and when used in a block, it affects resolution globally
|
|
/// so we aren't handling this correctly anyways).
|
|
prelude: Option<ModuleId>,
|
|
/// `macro_use` prelude that contains macros from `#[macro_use]`'d external crates. Note that
|
|
/// this contains all kinds of macro, not just `macro_rules!` macro.
|
|
macro_use_prelude: FxHashMap<Name, MacroId>,
|
|
|
|
/// Tracks which custom derives are in scope for an item, to allow resolution of derive helper
|
|
/// attributes.
|
|
derive_helpers_in_scope: FxHashMap<AstId<ast::Item>, Vec<(Name, MacroId, MacroCallId)>>,
|
|
|
|
/// The diagnostics that need to be emitted for this crate.
|
|
diagnostics: Vec<DefDiagnostic>,
|
|
|
|
/// The crate data that is shared between a crate's def map and all its block def maps.
|
|
data: Arc<DefMapCrateData>,
|
|
}
|
|
|
|
/// Data that belongs to a crate which is shared between a crate's def map and all its block def maps.
|
|
#[derive(Clone, Debug, PartialEq, Eq)]
|
|
struct DefMapCrateData {
|
|
/// The extern prelude which contains all root modules of external crates that are in scope.
|
|
extern_prelude: FxHashMap<Name, CrateRootModuleId>,
|
|
|
|
/// Side table for resolving derive helpers.
|
|
exported_derives: FxHashMap<MacroDefId, Box<[Name]>>,
|
|
fn_proc_macro_mapping: FxHashMap<FunctionId, ProcMacroId>,
|
|
/// The error that occurred when failing to load the proc-macro dll.
|
|
proc_macro_loading_error: Option<Box<str>>,
|
|
|
|
/// Custom attributes registered with `#![register_attr]`.
|
|
registered_attrs: Vec<SmolStr>,
|
|
/// Custom tool modules registered with `#![register_tool]`.
|
|
registered_tools: Vec<SmolStr>,
|
|
/// Unstable features of Rust enabled with `#![feature(A, B)]`.
|
|
unstable_features: FxHashSet<SmolStr>,
|
|
/// #[rustc_coherence_is_core]
|
|
rustc_coherence_is_core: bool,
|
|
no_core: bool,
|
|
no_std: bool,
|
|
|
|
edition: Edition,
|
|
recursion_limit: Option<u32>,
|
|
}
|
|
|
|
impl DefMapCrateData {
|
|
fn shrink_to_fit(&mut self) {
|
|
let Self {
|
|
extern_prelude,
|
|
exported_derives,
|
|
fn_proc_macro_mapping,
|
|
registered_attrs,
|
|
registered_tools,
|
|
unstable_features,
|
|
proc_macro_loading_error: _,
|
|
rustc_coherence_is_core: _,
|
|
no_core: _,
|
|
no_std: _,
|
|
edition: _,
|
|
recursion_limit: _,
|
|
} = self;
|
|
extern_prelude.shrink_to_fit();
|
|
exported_derives.shrink_to_fit();
|
|
fn_proc_macro_mapping.shrink_to_fit();
|
|
registered_attrs.shrink_to_fit();
|
|
registered_tools.shrink_to_fit();
|
|
unstable_features.shrink_to_fit();
|
|
}
|
|
}
|
|
|
|
/// For `DefMap`s computed for a block expression, this stores its location in the parent map.
|
|
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
|
struct BlockInfo {
|
|
/// The `BlockId` this `DefMap` was created from.
|
|
block: BlockId,
|
|
/// The containing module.
|
|
parent: BlockRelativeModuleId,
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
|
|
struct BlockRelativeModuleId {
|
|
block: Option<BlockId>,
|
|
local_id: LocalModuleId,
|
|
}
|
|
|
|
impl BlockRelativeModuleId {
|
|
fn def_map(self, db: &dyn DefDatabase, krate: CrateId) -> Arc<DefMap> {
|
|
self.into_module(krate).def_map(db)
|
|
}
|
|
|
|
fn into_module(self, krate: CrateId) -> ModuleId {
|
|
ModuleId { krate, block: self.block, local_id: self.local_id }
|
|
}
|
|
|
|
fn is_block_module(self) -> bool {
|
|
self.block.is_some() && self.local_id == DefMap::ROOT
|
|
}
|
|
}
|
|
|
|
impl std::ops::Index<LocalModuleId> for DefMap {
|
|
type Output = ModuleData;
|
|
fn index(&self, id: LocalModuleId) -> &ModuleData {
|
|
&self.modules[id]
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
|
|
pub enum ModuleOrigin {
|
|
CrateRoot {
|
|
definition: FileId,
|
|
},
|
|
/// Note that non-inline modules, by definition, live inside non-macro file.
|
|
File {
|
|
is_mod_rs: bool,
|
|
declaration: AstId<ast::Module>,
|
|
declaration_tree_id: ItemTreeId<Mod>,
|
|
definition: FileId,
|
|
},
|
|
Inline {
|
|
definition_tree_id: ItemTreeId<Mod>,
|
|
definition: AstId<ast::Module>,
|
|
},
|
|
/// Pseudo-module introduced by a block scope (contains only inner items).
|
|
BlockExpr {
|
|
block: AstId<ast::BlockExpr>,
|
|
},
|
|
}
|
|
|
|
impl ModuleOrigin {
|
|
pub fn declaration(&self) -> Option<AstId<ast::Module>> {
|
|
match self {
|
|
ModuleOrigin::File { declaration: module, .. }
|
|
| ModuleOrigin::Inline { definition: module, .. } => Some(*module),
|
|
ModuleOrigin::CrateRoot { .. } | ModuleOrigin::BlockExpr { .. } => None,
|
|
}
|
|
}
|
|
|
|
pub fn file_id(&self) -> Option<FileId> {
|
|
match self {
|
|
ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
|
|
Some(*definition)
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn is_inline(&self) -> bool {
|
|
match self {
|
|
ModuleOrigin::Inline { .. } | ModuleOrigin::BlockExpr { .. } => true,
|
|
ModuleOrigin::CrateRoot { .. } | ModuleOrigin::File { .. } => false,
|
|
}
|
|
}
|
|
|
|
/// Returns a node which defines this module.
|
|
/// That is, a file or a `mod foo {}` with items.
|
|
fn definition_source(&self, db: &dyn DefDatabase) -> InFile<ModuleSource> {
|
|
match self {
|
|
ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
|
|
let file_id = *definition;
|
|
let sf = db.parse(file_id).tree();
|
|
InFile::new(file_id.into(), ModuleSource::SourceFile(sf))
|
|
}
|
|
ModuleOrigin::Inline { definition, .. } => InFile::new(
|
|
definition.file_id,
|
|
ModuleSource::Module(definition.to_node(db.upcast())),
|
|
),
|
|
ModuleOrigin::BlockExpr { block } => {
|
|
InFile::new(block.file_id, ModuleSource::BlockExpr(block.to_node(db.upcast())))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct ModuleData {
|
|
/// Where does this module come from?
|
|
pub origin: ModuleOrigin,
|
|
/// Declared visibility of this module.
|
|
pub visibility: Visibility,
|
|
/// Parent module in the same `DefMap`.
|
|
///
|
|
/// [`None`] for block modules because they are always its `DefMap`'s root.
|
|
pub parent: Option<LocalModuleId>,
|
|
pub children: FxHashMap<Name, LocalModuleId>,
|
|
pub scope: ItemScope,
|
|
}
|
|
|
|
impl DefMap {
|
|
/// The module id of a crate or block root.
|
|
pub const ROOT: LocalModuleId = LocalModuleId::from_raw(la_arena::RawIdx::from_u32(0));
|
|
|
|
pub(crate) fn crate_def_map_query(db: &dyn DefDatabase, krate: CrateId) -> Arc<DefMap> {
|
|
let _p = profile::span("crate_def_map_query").detail(|| {
|
|
db.crate_graph()[krate].display_name.as_deref().unwrap_or_default().to_string()
|
|
});
|
|
|
|
let crate_graph = db.crate_graph();
|
|
|
|
let edition = crate_graph[krate].edition;
|
|
let origin = ModuleOrigin::CrateRoot { definition: crate_graph[krate].root_file_id };
|
|
let def_map = DefMap::empty(krate, edition, ModuleData::new(origin, Visibility::Public));
|
|
let def_map = collector::collect_defs(
|
|
db,
|
|
def_map,
|
|
TreeId::new(crate_graph[krate].root_file_id.into(), None),
|
|
);
|
|
|
|
Arc::new(def_map)
|
|
}
|
|
|
|
pub(crate) fn block_def_map_query(db: &dyn DefDatabase, block_id: BlockId) -> Arc<DefMap> {
|
|
let block: BlockLoc = db.lookup_intern_block(block_id);
|
|
|
|
let tree_id = TreeId::new(block.ast_id.file_id, Some(block_id));
|
|
|
|
let parent_map = block.module.def_map(db);
|
|
let krate = block.module.krate;
|
|
let local_id = LocalModuleId::from_raw(la_arena::RawIdx::from(0));
|
|
// NB: we use `None` as block here, which would be wrong for implicit
|
|
// modules declared by blocks with items. At the moment, we don't use
|
|
// this visibility for anything outside IDE, so that's probably OK.
|
|
let visibility = Visibility::Module(ModuleId { krate, local_id, block: None });
|
|
let module_data =
|
|
ModuleData::new(ModuleOrigin::BlockExpr { block: block.ast_id }, visibility);
|
|
|
|
let mut def_map = DefMap::empty(krate, parent_map.data.edition, module_data);
|
|
def_map.data = parent_map.data.clone();
|
|
def_map.block = Some(BlockInfo {
|
|
block: block_id,
|
|
parent: BlockRelativeModuleId {
|
|
block: block.module.block,
|
|
local_id: block.module.local_id,
|
|
},
|
|
});
|
|
|
|
let def_map = collector::collect_defs(db, def_map, tree_id);
|
|
Arc::new(def_map)
|
|
}
|
|
|
|
fn empty(krate: CrateId, edition: Edition, module_data: ModuleData) -> DefMap {
|
|
let mut modules: Arena<ModuleData> = Arena::default();
|
|
let root = modules.alloc(module_data);
|
|
assert_eq!(root, Self::ROOT);
|
|
|
|
DefMap {
|
|
_c: Count::new(),
|
|
block: None,
|
|
modules,
|
|
krate,
|
|
prelude: None,
|
|
macro_use_prelude: FxHashMap::default(),
|
|
derive_helpers_in_scope: FxHashMap::default(),
|
|
diagnostics: Vec::new(),
|
|
data: Arc::new(DefMapCrateData {
|
|
extern_prelude: FxHashMap::default(),
|
|
exported_derives: FxHashMap::default(),
|
|
fn_proc_macro_mapping: FxHashMap::default(),
|
|
proc_macro_loading_error: None,
|
|
registered_attrs: Vec::new(),
|
|
registered_tools: Vec::new(),
|
|
unstable_features: FxHashSet::default(),
|
|
rustc_coherence_is_core: false,
|
|
no_core: false,
|
|
no_std: false,
|
|
edition,
|
|
recursion_limit: None,
|
|
}),
|
|
}
|
|
}
|
|
|
|
pub fn modules_for_file(&self, file_id: FileId) -> impl Iterator<Item = LocalModuleId> + '_ {
|
|
self.modules
|
|
.iter()
|
|
.filter(move |(_id, data)| data.origin.file_id() == Some(file_id))
|
|
.map(|(id, _data)| id)
|
|
}
|
|
|
|
pub fn modules(&self) -> impl Iterator<Item = (LocalModuleId, &ModuleData)> + '_ {
|
|
self.modules.iter()
|
|
}
|
|
|
|
pub fn derive_helpers_in_scope(
|
|
&self,
|
|
id: AstId<ast::Adt>,
|
|
) -> Option<&[(Name, MacroId, MacroCallId)]> {
|
|
self.derive_helpers_in_scope.get(&id.map(|it| it.upcast())).map(Deref::deref)
|
|
}
|
|
|
|
pub fn registered_tools(&self) -> &[SmolStr] {
|
|
&self.data.registered_tools
|
|
}
|
|
|
|
pub fn registered_attrs(&self) -> &[SmolStr] {
|
|
&self.data.registered_attrs
|
|
}
|
|
|
|
pub fn is_unstable_feature_enabled(&self, feature: &str) -> bool {
|
|
self.data.unstable_features.contains(feature)
|
|
}
|
|
|
|
pub fn is_rustc_coherence_is_core(&self) -> bool {
|
|
self.data.rustc_coherence_is_core
|
|
}
|
|
|
|
pub fn is_no_std(&self) -> bool {
|
|
self.data.no_std || self.data.no_core
|
|
}
|
|
|
|
pub fn fn_as_proc_macro(&self, id: FunctionId) -> Option<ProcMacroId> {
|
|
self.data.fn_proc_macro_mapping.get(&id).copied()
|
|
}
|
|
|
|
pub fn proc_macro_loading_error(&self) -> Option<&str> {
|
|
self.data.proc_macro_loading_error.as_deref()
|
|
}
|
|
|
|
pub fn krate(&self) -> CrateId {
|
|
self.krate
|
|
}
|
|
|
|
pub(crate) fn block_id(&self) -> Option<BlockId> {
|
|
self.block.map(|block| block.block)
|
|
}
|
|
|
|
pub(crate) fn prelude(&self) -> Option<ModuleId> {
|
|
self.prelude
|
|
}
|
|
|
|
pub(crate) fn extern_prelude(&self) -> impl Iterator<Item = (&Name, ModuleId)> + '_ {
|
|
self.data.extern_prelude.iter().map(|(name, &def)| (name, def.into()))
|
|
}
|
|
|
|
pub(crate) fn macro_use_prelude(&self) -> impl Iterator<Item = (&Name, MacroId)> + '_ {
|
|
self.macro_use_prelude.iter().map(|(name, &def)| (name, def))
|
|
}
|
|
|
|
pub fn module_id(&self, local_id: LocalModuleId) -> ModuleId {
|
|
let block = self.block.map(|b| b.block);
|
|
ModuleId { krate: self.krate, local_id, block }
|
|
}
|
|
|
|
pub fn crate_root(&self) -> CrateRootModuleId {
|
|
CrateRootModuleId { krate: self.krate }
|
|
}
|
|
|
|
pub(crate) fn resolve_path(
|
|
&self,
|
|
db: &dyn DefDatabase,
|
|
original_module: LocalModuleId,
|
|
path: &ModPath,
|
|
shadow: BuiltinShadowMode,
|
|
expected_macro_subns: Option<MacroSubNs>,
|
|
) -> (PerNs, Option<usize>) {
|
|
let res = self.resolve_path_fp_with_macro(
|
|
db,
|
|
ResolveMode::Other,
|
|
original_module,
|
|
path,
|
|
shadow,
|
|
expected_macro_subns,
|
|
);
|
|
(res.resolved_def, res.segment_index)
|
|
}
|
|
|
|
pub(crate) fn resolve_path_locally(
|
|
&self,
|
|
db: &dyn DefDatabase,
|
|
original_module: LocalModuleId,
|
|
path: &ModPath,
|
|
shadow: BuiltinShadowMode,
|
|
) -> (PerNs, Option<usize>) {
|
|
let res = self.resolve_path_fp_with_macro_single(
|
|
db,
|
|
ResolveMode::Other,
|
|
original_module,
|
|
path,
|
|
shadow,
|
|
None, // Currently this function isn't used for macro resolution.
|
|
);
|
|
(res.resolved_def, res.segment_index)
|
|
}
|
|
|
|
/// Ascends the `DefMap` hierarchy and calls `f` with every `DefMap` and containing module.
|
|
///
|
|
/// If `f` returns `Some(val)`, iteration is stopped and `Some(val)` is returned. If `f` returns
|
|
/// `None`, iteration continues.
|
|
pub(crate) fn with_ancestor_maps<T>(
|
|
&self,
|
|
db: &dyn DefDatabase,
|
|
local_mod: LocalModuleId,
|
|
f: &mut dyn FnMut(&DefMap, LocalModuleId) -> Option<T>,
|
|
) -> Option<T> {
|
|
if let Some(it) = f(self, local_mod) {
|
|
return Some(it);
|
|
}
|
|
let mut block = self.block;
|
|
while let Some(block_info) = block {
|
|
let parent = block_info.parent.def_map(db, self.krate);
|
|
if let Some(it) = f(&parent, block_info.parent.local_id) {
|
|
return Some(it);
|
|
}
|
|
block = parent.block;
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// If this `DefMap` is for a block expression, returns the module containing the block (which
|
|
/// might again be a block, or a module inside a block).
|
|
pub fn parent(&self) -> Option<ModuleId> {
|
|
let BlockRelativeModuleId { block, local_id } = self.block?.parent;
|
|
Some(ModuleId { krate: self.krate, block, local_id })
|
|
}
|
|
|
|
/// Returns the module containing `local_mod`, either the parent `mod`, or the module (or block) containing
|
|
/// the block, if `self` corresponds to a block expression.
|
|
pub fn containing_module(&self, local_mod: LocalModuleId) -> Option<ModuleId> {
|
|
match self[local_mod].parent {
|
|
Some(parent) => Some(self.module_id(parent)),
|
|
None => {
|
|
self.block.map(
|
|
|BlockInfo { parent: BlockRelativeModuleId { block, local_id }, .. }| {
|
|
ModuleId { krate: self.krate, block, local_id }
|
|
},
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: this can use some more human-readable format (ideally, an IR
|
|
// even), as this should be a great debugging aid.
|
|
pub fn dump(&self, db: &dyn DefDatabase) -> String {
|
|
let mut buf = String::new();
|
|
let mut arc;
|
|
let mut current_map = self;
|
|
while let Some(block) = current_map.block {
|
|
go(&mut buf, db, current_map, "block scope", Self::ROOT);
|
|
buf.push('\n');
|
|
arc = block.parent.def_map(db, self.krate);
|
|
current_map = &arc;
|
|
}
|
|
go(&mut buf, db, current_map, "crate", Self::ROOT);
|
|
return buf;
|
|
|
|
fn go(
|
|
buf: &mut String,
|
|
db: &dyn DefDatabase,
|
|
map: &DefMap,
|
|
path: &str,
|
|
module: LocalModuleId,
|
|
) {
|
|
format_to!(buf, "{}\n", path);
|
|
|
|
map.modules[module].scope.dump(db.upcast(), buf);
|
|
|
|
for (name, child) in
|
|
map.modules[module].children.iter().sorted_by(|a, b| Ord::cmp(&a.0, &b.0))
|
|
{
|
|
let path = format!("{path}::{}", name.display(db.upcast()));
|
|
buf.push('\n');
|
|
go(buf, db, map, &path, *child);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn dump_block_scopes(&self, db: &dyn DefDatabase) -> String {
|
|
let mut buf = String::new();
|
|
let mut arc;
|
|
let mut current_map = self;
|
|
while let Some(block) = current_map.block {
|
|
format_to!(buf, "{:?} in {:?}\n", block.block, block.parent);
|
|
arc = block.parent.def_map(db, self.krate);
|
|
current_map = &arc;
|
|
}
|
|
|
|
format_to!(buf, "crate scope\n");
|
|
buf
|
|
}
|
|
|
|
fn shrink_to_fit(&mut self) {
|
|
// Exhaustive match to require handling new fields.
|
|
let Self {
|
|
_c: _,
|
|
macro_use_prelude,
|
|
diagnostics,
|
|
modules,
|
|
derive_helpers_in_scope,
|
|
block: _,
|
|
krate: _,
|
|
prelude: _,
|
|
data: _,
|
|
} = self;
|
|
|
|
macro_use_prelude.shrink_to_fit();
|
|
diagnostics.shrink_to_fit();
|
|
modules.shrink_to_fit();
|
|
derive_helpers_in_scope.shrink_to_fit();
|
|
for (_, module) in modules.iter_mut() {
|
|
module.children.shrink_to_fit();
|
|
module.scope.shrink_to_fit();
|
|
}
|
|
}
|
|
|
|
/// Get a reference to the def map's diagnostics.
|
|
pub fn diagnostics(&self) -> &[DefDiagnostic] {
|
|
self.diagnostics.as_slice()
|
|
}
|
|
|
|
pub fn recursion_limit(&self) -> Option<u32> {
|
|
self.data.recursion_limit
|
|
}
|
|
}
|
|
|
|
impl ModuleData {
|
|
pub(crate) fn new(origin: ModuleOrigin, visibility: Visibility) -> Self {
|
|
ModuleData {
|
|
origin,
|
|
visibility,
|
|
parent: None,
|
|
children: FxHashMap::default(),
|
|
scope: ItemScope::default(),
|
|
}
|
|
}
|
|
|
|
/// Returns a node which defines this module. That is, a file or a `mod foo {}` with items.
|
|
pub fn definition_source(&self, db: &dyn DefDatabase) -> InFile<ModuleSource> {
|
|
self.origin.definition_source(db)
|
|
}
|
|
|
|
/// Same as [`definition_source`] but only returns the file id to prevent parsing the ASt.
|
|
pub fn definition_source_file_id(&self) -> HirFileId {
|
|
match self.origin {
|
|
ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
|
|
definition.into()
|
|
}
|
|
ModuleOrigin::Inline { definition, .. } => definition.file_id,
|
|
ModuleOrigin::BlockExpr { block } => block.file_id,
|
|
}
|
|
}
|
|
|
|
/// Returns a node which declares this module, either a `mod foo;` or a `mod foo {}`.
|
|
/// `None` for the crate root or block.
|
|
pub fn declaration_source(&self, db: &dyn DefDatabase) -> Option<InFile<ast::Module>> {
|
|
let decl = self.origin.declaration()?;
|
|
let value = decl.to_node(db.upcast());
|
|
Some(InFile { file_id: decl.file_id, value })
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
pub enum ModuleSource {
|
|
SourceFile(ast::SourceFile),
|
|
Module(ast::Module),
|
|
BlockExpr(ast::BlockExpr),
|
|
}
|
|
|
|
/// See `sub_namespace_match()`.
|
|
#[derive(Clone, Copy, PartialEq, Eq)]
|
|
pub enum MacroSubNs {
|
|
/// Function-like macros, suffixed with `!`.
|
|
Bang,
|
|
/// Macros inside attributes, i.e. attribute macros and derive macros.
|
|
Attr,
|
|
}
|
|
|
|
impl MacroSubNs {
|
|
fn from_id(db: &dyn DefDatabase, macro_id: MacroId) -> Self {
|
|
let expander = match macro_id {
|
|
MacroId::Macro2Id(it) => it.lookup(db).expander,
|
|
MacroId::MacroRulesId(it) => it.lookup(db).expander,
|
|
MacroId::ProcMacroId(it) => {
|
|
return match it.lookup(db).kind {
|
|
ProcMacroKind::CustomDerive | ProcMacroKind::Attr => Self::Attr,
|
|
ProcMacroKind::FuncLike => Self::Bang,
|
|
};
|
|
}
|
|
};
|
|
|
|
// Eager macros aren't *guaranteed* to be bang macros, but they *are* all bang macros currently.
|
|
match expander {
|
|
MacroExpander::Declarative
|
|
| MacroExpander::BuiltIn(_)
|
|
| MacroExpander::BuiltInEager(_) => Self::Bang,
|
|
MacroExpander::BuiltInAttr(_) | MacroExpander::BuiltInDerive(_) => Self::Attr,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Quoted from [rustc]:
|
|
/// Macro namespace is separated into two sub-namespaces, one for bang macros and
|
|
/// one for attribute-like macros (attributes, derives).
|
|
/// We ignore resolutions from one sub-namespace when searching names in scope for another.
|
|
///
|
|
/// [rustc]: https://github.com/rust-lang/rust/blob/1.69.0/compiler/rustc_resolve/src/macros.rs#L75
|
|
fn sub_namespace_match(candidate: Option<MacroSubNs>, expected: Option<MacroSubNs>) -> bool {
|
|
match (candidate, expected) {
|
|
(Some(candidate), Some(expected)) => candidate == expected,
|
|
_ => true,
|
|
}
|
|
}
|