rust-analyzer/crates/hir-def/src/nameres.rs

705 lines
24 KiB
Rust

//! This module implements import-resolution/macro expansion algorithm.
//!
//! The result of this module is `DefMap`: a data structure which contains:
//!
//! * a tree of modules for the crate
//! * for each module, a set of items visible in the module (directly declared
//! or imported)
//!
//! Note that `DefMap` contains fully macro expanded code.
//!
//! Computing `DefMap` can be partitioned into several logically
//! independent "phases". The phases are mutually recursive though, there's no
//! strict ordering.
//!
//! ## Collecting RawItems
//!
//! This happens in the `raw` module, which parses a single source file into a
//! set of top-level items. Nested imports are desugared to flat imports in this
//! phase. Macro calls are represented as a triple of (Path, Option<Name>,
//! TokenTree).
//!
//! ## Collecting Modules
//!
//! This happens in the `collector` module. In this phase, we recursively walk
//! tree of modules, collect raw items from submodules, populate module scopes
//! with defined items (so, we assign item ids in this phase) and record the set
//! of unresolved imports and macros.
//!
//! While we walk tree of modules, we also record macro_rules definitions and
//! expand calls to macro_rules defined macros.
//!
//! ## Resolving Imports
//!
//! We maintain a list of currently unresolved imports. On every iteration, we
//! try to resolve some imports from this list. If the import is resolved, we
//! record it, by adding an item to current module scope and, if necessary, by
//! recursively populating glob imports.
//!
//! ## Resolving Macros
//!
//! macro_rules from the same crate use a global mutable namespace. We expand
//! them immediately, when we collect modules.
//!
//! Macros from other crates (including proc-macros) can be used with
//! `foo::bar!` syntax. We handle them similarly to imports. There's a list of
//! unexpanded macros. On every iteration, we try to resolve each macro call
//! path and, upon success, we run macro expansion and "collect module" phase on
//! the result
pub mod attr_resolution;
pub mod proc_macro;
pub mod diagnostics;
mod collector;
mod mod_resolution;
mod path_resolution;
#[cfg(test)]
mod tests;
use std::{cmp::Ord, ops::Deref};
use base_db::{CrateId, Edition, FileId, ProcMacroKind};
use hir_expand::{name::Name, HirFileId, InFile, MacroCallId, MacroDefId};
use itertools::Itertools;
use la_arena::Arena;
use profile::Count;
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::format_to;
use syntax::{ast, SmolStr};
use triomphe::Arc;
use crate::{
db::DefDatabase,
item_scope::{BuiltinShadowMode, ItemScope},
item_tree::{ItemTreeId, Mod, TreeId},
nameres::{diagnostics::DefDiagnostic, path_resolution::ResolveMode},
path::ModPath,
per_ns::PerNs,
visibility::Visibility,
AstId, BlockId, BlockLoc, CrateRootModuleId, FunctionId, LocalModuleId, Lookup, MacroExpander,
MacroId, ModuleId, ProcMacroId,
};
/// Contains the results of (early) name resolution.
///
/// A `DefMap` stores the module tree and the definitions that are in scope in every module after
/// item-level macros have been expanded.
///
/// Every crate has a primary `DefMap` whose root is the crate's main file (`main.rs`/`lib.rs`),
/// computed by the `crate_def_map` query. Additionally, every block expression introduces the
/// opportunity to write arbitrary item and module hierarchies, and thus gets its own `DefMap` that
/// is computed by the `block_def_map` query.
#[derive(Debug, PartialEq, Eq)]
pub struct DefMap {
_c: Count<Self>,
/// When this is a block def map, this will hold the block id of the the block and module that
/// contains this block.
block: Option<BlockInfo>,
/// The modules and their data declared in this crate.
modules: Arena<ModuleData>,
krate: CrateId,
/// The prelude module for this crate. This either comes from an import
/// marked with the `prelude_import` attribute, or (in the normal case) from
/// a dependency (`std` or `core`).
/// The prelude is empty for non-block DefMaps (unless `#[prelude_import]` was used,
/// but that attribute is nightly and when used in a block, it affects resolution globally
/// so we aren't handling this correctly anyways).
prelude: Option<ModuleId>,
/// `macro_use` prelude that contains macros from `#[macro_use]`'d external crates. Note that
/// this contains all kinds of macro, not just `macro_rules!` macro.
macro_use_prelude: FxHashMap<Name, MacroId>,
/// Tracks which custom derives are in scope for an item, to allow resolution of derive helper
/// attributes.
derive_helpers_in_scope: FxHashMap<AstId<ast::Item>, Vec<(Name, MacroId, MacroCallId)>>,
/// The diagnostics that need to be emitted for this crate.
diagnostics: Vec<DefDiagnostic>,
/// The crate data that is shared between a crate's def map and all its block def maps.
data: Arc<DefMapCrateData>,
}
/// Data that belongs to a crate which is shared between a crate's def map and all its block def maps.
#[derive(Clone, Debug, PartialEq, Eq)]
struct DefMapCrateData {
/// The extern prelude which contains all root modules of external crates that are in scope.
extern_prelude: FxHashMap<Name, CrateRootModuleId>,
/// Side table for resolving derive helpers.
exported_derives: FxHashMap<MacroDefId, Box<[Name]>>,
fn_proc_macro_mapping: FxHashMap<FunctionId, ProcMacroId>,
/// The error that occurred when failing to load the proc-macro dll.
proc_macro_loading_error: Option<Box<str>>,
/// Custom attributes registered with `#![register_attr]`.
registered_attrs: Vec<SmolStr>,
/// Custom tool modules registered with `#![register_tool]`.
registered_tools: Vec<SmolStr>,
/// Unstable features of Rust enabled with `#![feature(A, B)]`.
unstable_features: FxHashSet<SmolStr>,
/// #[rustc_coherence_is_core]
rustc_coherence_is_core: bool,
no_core: bool,
no_std: bool,
edition: Edition,
recursion_limit: Option<u32>,
}
impl DefMapCrateData {
fn shrink_to_fit(&mut self) {
let Self {
extern_prelude,
exported_derives,
fn_proc_macro_mapping,
registered_attrs,
registered_tools,
unstable_features,
proc_macro_loading_error: _,
rustc_coherence_is_core: _,
no_core: _,
no_std: _,
edition: _,
recursion_limit: _,
} = self;
extern_prelude.shrink_to_fit();
exported_derives.shrink_to_fit();
fn_proc_macro_mapping.shrink_to_fit();
registered_attrs.shrink_to_fit();
registered_tools.shrink_to_fit();
unstable_features.shrink_to_fit();
}
}
/// For `DefMap`s computed for a block expression, this stores its location in the parent map.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
struct BlockInfo {
/// The `BlockId` this `DefMap` was created from.
block: BlockId,
/// The containing module.
parent: BlockRelativeModuleId,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
struct BlockRelativeModuleId {
block: Option<BlockId>,
local_id: LocalModuleId,
}
impl BlockRelativeModuleId {
fn def_map(self, db: &dyn DefDatabase, krate: CrateId) -> Arc<DefMap> {
self.into_module(krate).def_map(db)
}
fn into_module(self, krate: CrateId) -> ModuleId {
ModuleId { krate, block: self.block, local_id: self.local_id }
}
fn is_block_module(self) -> bool {
self.block.is_some() && self.local_id == DefMap::ROOT
}
}
impl std::ops::Index<LocalModuleId> for DefMap {
type Output = ModuleData;
fn index(&self, id: LocalModuleId) -> &ModuleData {
&self.modules[id]
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum ModuleOrigin {
CrateRoot {
definition: FileId,
},
/// Note that non-inline modules, by definition, live inside non-macro file.
File {
is_mod_rs: bool,
declaration: AstId<ast::Module>,
declaration_tree_id: ItemTreeId<Mod>,
definition: FileId,
},
Inline {
definition_tree_id: ItemTreeId<Mod>,
definition: AstId<ast::Module>,
},
/// Pseudo-module introduced by a block scope (contains only inner items).
BlockExpr {
block: AstId<ast::BlockExpr>,
},
}
impl ModuleOrigin {
pub fn declaration(&self) -> Option<AstId<ast::Module>> {
match self {
ModuleOrigin::File { declaration: module, .. }
| ModuleOrigin::Inline { definition: module, .. } => Some(*module),
ModuleOrigin::CrateRoot { .. } | ModuleOrigin::BlockExpr { .. } => None,
}
}
pub fn file_id(&self) -> Option<FileId> {
match self {
ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
Some(*definition)
}
_ => None,
}
}
pub fn is_inline(&self) -> bool {
match self {
ModuleOrigin::Inline { .. } | ModuleOrigin::BlockExpr { .. } => true,
ModuleOrigin::CrateRoot { .. } | ModuleOrigin::File { .. } => false,
}
}
/// Returns a node which defines this module.
/// That is, a file or a `mod foo {}` with items.
fn definition_source(&self, db: &dyn DefDatabase) -> InFile<ModuleSource> {
match self {
ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
let file_id = *definition;
let sf = db.parse(file_id).tree();
InFile::new(file_id.into(), ModuleSource::SourceFile(sf))
}
ModuleOrigin::Inline { definition, .. } => InFile::new(
definition.file_id,
ModuleSource::Module(definition.to_node(db.upcast())),
),
ModuleOrigin::BlockExpr { block } => {
InFile::new(block.file_id, ModuleSource::BlockExpr(block.to_node(db.upcast())))
}
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct ModuleData {
/// Where does this module come from?
pub origin: ModuleOrigin,
/// Declared visibility of this module.
pub visibility: Visibility,
/// Parent module in the same `DefMap`.
///
/// [`None`] for block modules because they are always its `DefMap`'s root.
pub parent: Option<LocalModuleId>,
pub children: FxHashMap<Name, LocalModuleId>,
pub scope: ItemScope,
}
impl DefMap {
/// The module id of a crate or block root.
pub const ROOT: LocalModuleId = LocalModuleId::from_raw(la_arena::RawIdx::from_u32(0));
pub(crate) fn crate_def_map_query(db: &dyn DefDatabase, krate: CrateId) -> Arc<DefMap> {
let _p = profile::span("crate_def_map_query").detail(|| {
db.crate_graph()[krate].display_name.as_deref().unwrap_or_default().to_string()
});
let crate_graph = db.crate_graph();
let edition = crate_graph[krate].edition;
let origin = ModuleOrigin::CrateRoot { definition: crate_graph[krate].root_file_id };
let def_map = DefMap::empty(krate, edition, ModuleData::new(origin, Visibility::Public));
let def_map = collector::collect_defs(
db,
def_map,
TreeId::new(crate_graph[krate].root_file_id.into(), None),
);
Arc::new(def_map)
}
pub(crate) fn block_def_map_query(db: &dyn DefDatabase, block_id: BlockId) -> Arc<DefMap> {
let block: BlockLoc = db.lookup_intern_block(block_id);
let tree_id = TreeId::new(block.ast_id.file_id, Some(block_id));
let parent_map = block.module.def_map(db);
let krate = block.module.krate;
let local_id = LocalModuleId::from_raw(la_arena::RawIdx::from(0));
// NB: we use `None` as block here, which would be wrong for implicit
// modules declared by blocks with items. At the moment, we don't use
// this visibility for anything outside IDE, so that's probably OK.
let visibility = Visibility::Module(ModuleId { krate, local_id, block: None });
let module_data =
ModuleData::new(ModuleOrigin::BlockExpr { block: block.ast_id }, visibility);
let mut def_map = DefMap::empty(krate, parent_map.data.edition, module_data);
def_map.data = parent_map.data.clone();
def_map.block = Some(BlockInfo {
block: block_id,
parent: BlockRelativeModuleId {
block: block.module.block,
local_id: block.module.local_id,
},
});
let def_map = collector::collect_defs(db, def_map, tree_id);
Arc::new(def_map)
}
fn empty(krate: CrateId, edition: Edition, module_data: ModuleData) -> DefMap {
let mut modules: Arena<ModuleData> = Arena::default();
let root = modules.alloc(module_data);
assert_eq!(root, Self::ROOT);
DefMap {
_c: Count::new(),
block: None,
modules,
krate,
prelude: None,
macro_use_prelude: FxHashMap::default(),
derive_helpers_in_scope: FxHashMap::default(),
diagnostics: Vec::new(),
data: Arc::new(DefMapCrateData {
extern_prelude: FxHashMap::default(),
exported_derives: FxHashMap::default(),
fn_proc_macro_mapping: FxHashMap::default(),
proc_macro_loading_error: None,
registered_attrs: Vec::new(),
registered_tools: Vec::new(),
unstable_features: FxHashSet::default(),
rustc_coherence_is_core: false,
no_core: false,
no_std: false,
edition,
recursion_limit: None,
}),
}
}
pub fn modules_for_file(&self, file_id: FileId) -> impl Iterator<Item = LocalModuleId> + '_ {
self.modules
.iter()
.filter(move |(_id, data)| data.origin.file_id() == Some(file_id))
.map(|(id, _data)| id)
}
pub fn modules(&self) -> impl Iterator<Item = (LocalModuleId, &ModuleData)> + '_ {
self.modules.iter()
}
pub fn derive_helpers_in_scope(
&self,
id: AstId<ast::Adt>,
) -> Option<&[(Name, MacroId, MacroCallId)]> {
self.derive_helpers_in_scope.get(&id.map(|it| it.upcast())).map(Deref::deref)
}
pub fn registered_tools(&self) -> &[SmolStr] {
&self.data.registered_tools
}
pub fn registered_attrs(&self) -> &[SmolStr] {
&self.data.registered_attrs
}
pub fn is_unstable_feature_enabled(&self, feature: &str) -> bool {
self.data.unstable_features.contains(feature)
}
pub fn is_rustc_coherence_is_core(&self) -> bool {
self.data.rustc_coherence_is_core
}
pub fn is_no_std(&self) -> bool {
self.data.no_std || self.data.no_core
}
pub fn fn_as_proc_macro(&self, id: FunctionId) -> Option<ProcMacroId> {
self.data.fn_proc_macro_mapping.get(&id).copied()
}
pub fn proc_macro_loading_error(&self) -> Option<&str> {
self.data.proc_macro_loading_error.as_deref()
}
pub fn krate(&self) -> CrateId {
self.krate
}
pub(crate) fn block_id(&self) -> Option<BlockId> {
self.block.map(|block| block.block)
}
pub(crate) fn prelude(&self) -> Option<ModuleId> {
self.prelude
}
pub(crate) fn extern_prelude(&self) -> impl Iterator<Item = (&Name, ModuleId)> + '_ {
self.data.extern_prelude.iter().map(|(name, &def)| (name, def.into()))
}
pub(crate) fn macro_use_prelude(&self) -> impl Iterator<Item = (&Name, MacroId)> + '_ {
self.macro_use_prelude.iter().map(|(name, &def)| (name, def))
}
pub fn module_id(&self, local_id: LocalModuleId) -> ModuleId {
let block = self.block.map(|b| b.block);
ModuleId { krate: self.krate, local_id, block }
}
pub fn crate_root(&self) -> CrateRootModuleId {
CrateRootModuleId { krate: self.krate }
}
pub(crate) fn resolve_path(
&self,
db: &dyn DefDatabase,
original_module: LocalModuleId,
path: &ModPath,
shadow: BuiltinShadowMode,
expected_macro_subns: Option<MacroSubNs>,
) -> (PerNs, Option<usize>) {
let res = self.resolve_path_fp_with_macro(
db,
ResolveMode::Other,
original_module,
path,
shadow,
expected_macro_subns,
);
(res.resolved_def, res.segment_index)
}
pub(crate) fn resolve_path_locally(
&self,
db: &dyn DefDatabase,
original_module: LocalModuleId,
path: &ModPath,
shadow: BuiltinShadowMode,
) -> (PerNs, Option<usize>) {
let res = self.resolve_path_fp_with_macro_single(
db,
ResolveMode::Other,
original_module,
path,
shadow,
None, // Currently this function isn't used for macro resolution.
);
(res.resolved_def, res.segment_index)
}
/// Ascends the `DefMap` hierarchy and calls `f` with every `DefMap` and containing module.
///
/// If `f` returns `Some(val)`, iteration is stopped and `Some(val)` is returned. If `f` returns
/// `None`, iteration continues.
pub(crate) fn with_ancestor_maps<T>(
&self,
db: &dyn DefDatabase,
local_mod: LocalModuleId,
f: &mut dyn FnMut(&DefMap, LocalModuleId) -> Option<T>,
) -> Option<T> {
if let Some(it) = f(self, local_mod) {
return Some(it);
}
let mut block = self.block;
while let Some(block_info) = block {
let parent = block_info.parent.def_map(db, self.krate);
if let Some(it) = f(&parent, block_info.parent.local_id) {
return Some(it);
}
block = parent.block;
}
None
}
/// If this `DefMap` is for a block expression, returns the module containing the block (which
/// might again be a block, or a module inside a block).
pub fn parent(&self) -> Option<ModuleId> {
let BlockRelativeModuleId { block, local_id } = self.block?.parent;
Some(ModuleId { krate: self.krate, block, local_id })
}
/// Returns the module containing `local_mod`, either the parent `mod`, or the module (or block) containing
/// the block, if `self` corresponds to a block expression.
pub fn containing_module(&self, local_mod: LocalModuleId) -> Option<ModuleId> {
match self[local_mod].parent {
Some(parent) => Some(self.module_id(parent)),
None => {
self.block.map(
|BlockInfo { parent: BlockRelativeModuleId { block, local_id }, .. }| {
ModuleId { krate: self.krate, block, local_id }
},
)
}
}
}
// FIXME: this can use some more human-readable format (ideally, an IR
// even), as this should be a great debugging aid.
pub fn dump(&self, db: &dyn DefDatabase) -> String {
let mut buf = String::new();
let mut arc;
let mut current_map = self;
while let Some(block) = current_map.block {
go(&mut buf, db, current_map, "block scope", Self::ROOT);
buf.push('\n');
arc = block.parent.def_map(db, self.krate);
current_map = &arc;
}
go(&mut buf, db, current_map, "crate", Self::ROOT);
return buf;
fn go(
buf: &mut String,
db: &dyn DefDatabase,
map: &DefMap,
path: &str,
module: LocalModuleId,
) {
format_to!(buf, "{}\n", path);
map.modules[module].scope.dump(db.upcast(), buf);
for (name, child) in
map.modules[module].children.iter().sorted_by(|a, b| Ord::cmp(&a.0, &b.0))
{
let path = format!("{path}::{}", name.display(db.upcast()));
buf.push('\n');
go(buf, db, map, &path, *child);
}
}
}
pub fn dump_block_scopes(&self, db: &dyn DefDatabase) -> String {
let mut buf = String::new();
let mut arc;
let mut current_map = self;
while let Some(block) = current_map.block {
format_to!(buf, "{:?} in {:?}\n", block.block, block.parent);
arc = block.parent.def_map(db, self.krate);
current_map = &arc;
}
format_to!(buf, "crate scope\n");
buf
}
fn shrink_to_fit(&mut self) {
// Exhaustive match to require handling new fields.
let Self {
_c: _,
macro_use_prelude,
diagnostics,
modules,
derive_helpers_in_scope,
block: _,
krate: _,
prelude: _,
data: _,
} = self;
macro_use_prelude.shrink_to_fit();
diagnostics.shrink_to_fit();
modules.shrink_to_fit();
derive_helpers_in_scope.shrink_to_fit();
for (_, module) in modules.iter_mut() {
module.children.shrink_to_fit();
module.scope.shrink_to_fit();
}
}
/// Get a reference to the def map's diagnostics.
pub fn diagnostics(&self) -> &[DefDiagnostic] {
self.diagnostics.as_slice()
}
pub fn recursion_limit(&self) -> Option<u32> {
self.data.recursion_limit
}
}
impl ModuleData {
pub(crate) fn new(origin: ModuleOrigin, visibility: Visibility) -> Self {
ModuleData {
origin,
visibility,
parent: None,
children: FxHashMap::default(),
scope: ItemScope::default(),
}
}
/// Returns a node which defines this module. That is, a file or a `mod foo {}` with items.
pub fn definition_source(&self, db: &dyn DefDatabase) -> InFile<ModuleSource> {
self.origin.definition_source(db)
}
/// Same as [`definition_source`] but only returns the file id to prevent parsing the ASt.
pub fn definition_source_file_id(&self) -> HirFileId {
match self.origin {
ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
definition.into()
}
ModuleOrigin::Inline { definition, .. } => definition.file_id,
ModuleOrigin::BlockExpr { block } => block.file_id,
}
}
/// Returns a node which declares this module, either a `mod foo;` or a `mod foo {}`.
/// `None` for the crate root or block.
pub fn declaration_source(&self, db: &dyn DefDatabase) -> Option<InFile<ast::Module>> {
let decl = self.origin.declaration()?;
let value = decl.to_node(db.upcast());
Some(InFile { file_id: decl.file_id, value })
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ModuleSource {
SourceFile(ast::SourceFile),
Module(ast::Module),
BlockExpr(ast::BlockExpr),
}
/// See `sub_namespace_match()`.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum MacroSubNs {
/// Function-like macros, suffixed with `!`.
Bang,
/// Macros inside attributes, i.e. attribute macros and derive macros.
Attr,
}
impl MacroSubNs {
fn from_id(db: &dyn DefDatabase, macro_id: MacroId) -> Self {
let expander = match macro_id {
MacroId::Macro2Id(it) => it.lookup(db).expander,
MacroId::MacroRulesId(it) => it.lookup(db).expander,
MacroId::ProcMacroId(it) => {
return match it.lookup(db).kind {
ProcMacroKind::CustomDerive | ProcMacroKind::Attr => Self::Attr,
ProcMacroKind::FuncLike => Self::Bang,
};
}
};
// Eager macros aren't *guaranteed* to be bang macros, but they *are* all bang macros currently.
match expander {
MacroExpander::Declarative
| MacroExpander::BuiltIn(_)
| MacroExpander::BuiltInEager(_) => Self::Bang,
MacroExpander::BuiltInAttr(_) | MacroExpander::BuiltInDerive(_) => Self::Attr,
}
}
}
/// Quoted from [rustc]:
/// Macro namespace is separated into two sub-namespaces, one for bang macros and
/// one for attribute-like macros (attributes, derives).
/// We ignore resolutions from one sub-namespace when searching names in scope for another.
///
/// [rustc]: https://github.com/rust-lang/rust/blob/1.69.0/compiler/rustc_resolve/src/macros.rs#L75
fn sub_namespace_match(candidate: Option<MacroSubNs>, expected: Option<MacroSubNs>) -> bool {
match (candidate, expected) {
(Some(candidate), Some(expected)) => candidate == expected,
_ => true,
}
}