//! This module implements import-resolution/macro expansion algorithm. //! //! The result of this module is `DefMap`: a data structure which contains: //! //! * a tree of modules for the crate //! * for each module, a set of items visible in the module (directly declared //! or imported) //! //! Note that `DefMap` contains fully macro expanded code. //! //! Computing `DefMap` can be partitioned into several logically //! independent "phases". The phases are mutually recursive though, there's no //! strict ordering. //! //! ## Collecting RawItems //! //! This happens in the `raw` module, which parses a single source file into a //! set of top-level items. Nested imports are desugared to flat imports in this //! phase. Macro calls are represented as a triple of (Path, Option, //! TokenTree). //! //! ## Collecting Modules //! //! This happens in the `collector` module. In this phase, we recursively walk //! tree of modules, collect raw items from submodules, populate module scopes //! with defined items (so, we assign item ids in this phase) and record the set //! of unresolved imports and macros. //! //! While we walk tree of modules, we also record macro_rules definitions and //! expand calls to macro_rules defined macros. //! //! ## Resolving Imports //! //! We maintain a list of currently unresolved imports. On every iteration, we //! try to resolve some imports from this list. If the import is resolved, we //! record it, by adding an item to current module scope and, if necessary, by //! recursively populating glob imports. //! //! ## Resolving Macros //! //! macro_rules from the same crate use a global mutable namespace. We expand //! them immediately, when we collect modules. //! //! Macros from other crates (including proc-macros) can be used with //! `foo::bar!` syntax. We handle them similarly to imports. There's a list of //! unexpanded macros. On every iteration, we try to resolve each macro call //! path and, upon success, we run macro expansion and "collect module" phase on //! the result pub mod attr_resolution; pub mod proc_macro; pub mod diagnostics; mod collector; mod mod_resolution; mod path_resolution; #[cfg(test)] mod tests; use std::{cmp::Ord, ops::Deref}; use base_db::{CrateId, Edition, FileId, ProcMacroKind}; use hir_expand::{name::Name, HirFileId, InFile, MacroCallId, MacroDefId}; use itertools::Itertools; use la_arena::Arena; use profile::Count; use rustc_hash::{FxHashMap, FxHashSet}; use stdx::format_to; use syntax::{ast, SmolStr}; use triomphe::Arc; use crate::{ db::DefDatabase, item_scope::{BuiltinShadowMode, ItemScope}, item_tree::{ItemTreeId, Mod, TreeId}, nameres::{diagnostics::DefDiagnostic, path_resolution::ResolveMode}, path::ModPath, per_ns::PerNs, visibility::Visibility, AstId, BlockId, BlockLoc, CrateRootModuleId, FunctionId, LocalModuleId, Lookup, MacroExpander, MacroId, ModuleId, ProcMacroId, }; /// Contains the results of (early) name resolution. /// /// A `DefMap` stores the module tree and the definitions that are in scope in every module after /// item-level macros have been expanded. /// /// Every crate has a primary `DefMap` whose root is the crate's main file (`main.rs`/`lib.rs`), /// computed by the `crate_def_map` query. Additionally, every block expression introduces the /// opportunity to write arbitrary item and module hierarchies, and thus gets its own `DefMap` that /// is computed by the `block_def_map` query. #[derive(Debug, PartialEq, Eq)] pub struct DefMap { _c: Count, /// When this is a block def map, this will hold the block id of the the block and module that /// contains this block. block: Option, /// The modules and their data declared in this crate. modules: Arena, krate: CrateId, /// The prelude module for this crate. This either comes from an import /// marked with the `prelude_import` attribute, or (in the normal case) from /// a dependency (`std` or `core`). /// The prelude is empty for non-block DefMaps (unless `#[prelude_import]` was used, /// but that attribute is nightly and when used in a block, it affects resolution globally /// so we aren't handling this correctly anyways). prelude: Option, /// `macro_use` prelude that contains macros from `#[macro_use]`'d external crates. Note that /// this contains all kinds of macro, not just `macro_rules!` macro. macro_use_prelude: FxHashMap, /// Tracks which custom derives are in scope for an item, to allow resolution of derive helper /// attributes. derive_helpers_in_scope: FxHashMap, Vec<(Name, MacroId, MacroCallId)>>, /// The diagnostics that need to be emitted for this crate. diagnostics: Vec, /// The crate data that is shared between a crate's def map and all its block def maps. data: Arc, } /// Data that belongs to a crate which is shared between a crate's def map and all its block def maps. #[derive(Clone, Debug, PartialEq, Eq)] struct DefMapCrateData { /// The extern prelude which contains all root modules of external crates that are in scope. extern_prelude: FxHashMap, /// Side table for resolving derive helpers. exported_derives: FxHashMap>, fn_proc_macro_mapping: FxHashMap, /// The error that occurred when failing to load the proc-macro dll. proc_macro_loading_error: Option>, /// Custom attributes registered with `#![register_attr]`. registered_attrs: Vec, /// Custom tool modules registered with `#![register_tool]`. registered_tools: Vec, /// Unstable features of Rust enabled with `#![feature(A, B)]`. unstable_features: FxHashSet, /// #[rustc_coherence_is_core] rustc_coherence_is_core: bool, no_core: bool, no_std: bool, edition: Edition, recursion_limit: Option, } impl DefMapCrateData { fn shrink_to_fit(&mut self) { let Self { extern_prelude, exported_derives, fn_proc_macro_mapping, registered_attrs, registered_tools, unstable_features, proc_macro_loading_error: _, rustc_coherence_is_core: _, no_core: _, no_std: _, edition: _, recursion_limit: _, } = self; extern_prelude.shrink_to_fit(); exported_derives.shrink_to_fit(); fn_proc_macro_mapping.shrink_to_fit(); registered_attrs.shrink_to_fit(); registered_tools.shrink_to_fit(); unstable_features.shrink_to_fit(); } } /// For `DefMap`s computed for a block expression, this stores its location in the parent map. #[derive(Debug, PartialEq, Eq, Clone, Copy)] struct BlockInfo { /// The `BlockId` this `DefMap` was created from. block: BlockId, /// The containing module. parent: BlockRelativeModuleId, } #[derive(Debug, PartialEq, Eq, Clone, Copy)] struct BlockRelativeModuleId { block: Option, local_id: LocalModuleId, } impl BlockRelativeModuleId { fn def_map(self, db: &dyn DefDatabase, krate: CrateId) -> Arc { self.into_module(krate).def_map(db) } fn into_module(self, krate: CrateId) -> ModuleId { ModuleId { krate, block: self.block, local_id: self.local_id } } fn is_block_module(self) -> bool { self.block.is_some() && self.local_id == DefMap::ROOT } } impl std::ops::Index for DefMap { type Output = ModuleData; fn index(&self, id: LocalModuleId) -> &ModuleData { &self.modules[id] } } #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)] pub enum ModuleOrigin { CrateRoot { definition: FileId, }, /// Note that non-inline modules, by definition, live inside non-macro file. File { is_mod_rs: bool, declaration: AstId, declaration_tree_id: ItemTreeId, definition: FileId, }, Inline { definition_tree_id: ItemTreeId, definition: AstId, }, /// Pseudo-module introduced by a block scope (contains only inner items). BlockExpr { block: AstId, }, } impl ModuleOrigin { pub fn declaration(&self) -> Option> { match self { ModuleOrigin::File { declaration: module, .. } | ModuleOrigin::Inline { definition: module, .. } => Some(*module), ModuleOrigin::CrateRoot { .. } | ModuleOrigin::BlockExpr { .. } => None, } } pub fn file_id(&self) -> Option { match self { ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => { Some(*definition) } _ => None, } } pub fn is_inline(&self) -> bool { match self { ModuleOrigin::Inline { .. } | ModuleOrigin::BlockExpr { .. } => true, ModuleOrigin::CrateRoot { .. } | ModuleOrigin::File { .. } => false, } } /// Returns a node which defines this module. /// That is, a file or a `mod foo {}` with items. fn definition_source(&self, db: &dyn DefDatabase) -> InFile { match self { ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => { let file_id = *definition; let sf = db.parse(file_id).tree(); InFile::new(file_id.into(), ModuleSource::SourceFile(sf)) } ModuleOrigin::Inline { definition, .. } => InFile::new( definition.file_id, ModuleSource::Module(definition.to_node(db.upcast())), ), ModuleOrigin::BlockExpr { block } => { InFile::new(block.file_id, ModuleSource::BlockExpr(block.to_node(db.upcast()))) } } } } #[derive(Debug, PartialEq, Eq)] pub struct ModuleData { /// Where does this module come from? pub origin: ModuleOrigin, /// Declared visibility of this module. pub visibility: Visibility, /// Parent module in the same `DefMap`. /// /// [`None`] for block modules because they are always its `DefMap`'s root. pub parent: Option, pub children: FxHashMap, pub scope: ItemScope, } impl DefMap { /// The module id of a crate or block root. pub const ROOT: LocalModuleId = LocalModuleId::from_raw(la_arena::RawIdx::from_u32(0)); pub(crate) fn crate_def_map_query(db: &dyn DefDatabase, krate: CrateId) -> Arc { let _p = profile::span("crate_def_map_query").detail(|| { db.crate_graph()[krate].display_name.as_deref().unwrap_or_default().to_string() }); let crate_graph = db.crate_graph(); let edition = crate_graph[krate].edition; let origin = ModuleOrigin::CrateRoot { definition: crate_graph[krate].root_file_id }; let def_map = DefMap::empty(krate, edition, ModuleData::new(origin, Visibility::Public)); let def_map = collector::collect_defs( db, def_map, TreeId::new(crate_graph[krate].root_file_id.into(), None), ); Arc::new(def_map) } pub(crate) fn block_def_map_query(db: &dyn DefDatabase, block_id: BlockId) -> Arc { let block: BlockLoc = db.lookup_intern_block(block_id); let tree_id = TreeId::new(block.ast_id.file_id, Some(block_id)); let parent_map = block.module.def_map(db); let krate = block.module.krate; let local_id = LocalModuleId::from_raw(la_arena::RawIdx::from(0)); // NB: we use `None` as block here, which would be wrong for implicit // modules declared by blocks with items. At the moment, we don't use // this visibility for anything outside IDE, so that's probably OK. let visibility = Visibility::Module(ModuleId { krate, local_id, block: None }); let module_data = ModuleData::new(ModuleOrigin::BlockExpr { block: block.ast_id }, visibility); let mut def_map = DefMap::empty(krate, parent_map.data.edition, module_data); def_map.data = parent_map.data.clone(); def_map.block = Some(BlockInfo { block: block_id, parent: BlockRelativeModuleId { block: block.module.block, local_id: block.module.local_id, }, }); let def_map = collector::collect_defs(db, def_map, tree_id); Arc::new(def_map) } fn empty(krate: CrateId, edition: Edition, module_data: ModuleData) -> DefMap { let mut modules: Arena = Arena::default(); let root = modules.alloc(module_data); assert_eq!(root, Self::ROOT); DefMap { _c: Count::new(), block: None, modules, krate, prelude: None, macro_use_prelude: FxHashMap::default(), derive_helpers_in_scope: FxHashMap::default(), diagnostics: Vec::new(), data: Arc::new(DefMapCrateData { extern_prelude: FxHashMap::default(), exported_derives: FxHashMap::default(), fn_proc_macro_mapping: FxHashMap::default(), proc_macro_loading_error: None, registered_attrs: Vec::new(), registered_tools: Vec::new(), unstable_features: FxHashSet::default(), rustc_coherence_is_core: false, no_core: false, no_std: false, edition, recursion_limit: None, }), } } pub fn modules_for_file(&self, file_id: FileId) -> impl Iterator + '_ { self.modules .iter() .filter(move |(_id, data)| data.origin.file_id() == Some(file_id)) .map(|(id, _data)| id) } pub fn modules(&self) -> impl Iterator + '_ { self.modules.iter() } pub fn derive_helpers_in_scope( &self, id: AstId, ) -> Option<&[(Name, MacroId, MacroCallId)]> { self.derive_helpers_in_scope.get(&id.map(|it| it.upcast())).map(Deref::deref) } pub fn registered_tools(&self) -> &[SmolStr] { &self.data.registered_tools } pub fn registered_attrs(&self) -> &[SmolStr] { &self.data.registered_attrs } pub fn is_unstable_feature_enabled(&self, feature: &str) -> bool { self.data.unstable_features.contains(feature) } pub fn is_rustc_coherence_is_core(&self) -> bool { self.data.rustc_coherence_is_core } pub fn is_no_std(&self) -> bool { self.data.no_std || self.data.no_core } pub fn fn_as_proc_macro(&self, id: FunctionId) -> Option { self.data.fn_proc_macro_mapping.get(&id).copied() } pub fn proc_macro_loading_error(&self) -> Option<&str> { self.data.proc_macro_loading_error.as_deref() } pub fn krate(&self) -> CrateId { self.krate } pub(crate) fn block_id(&self) -> Option { self.block.map(|block| block.block) } pub(crate) fn prelude(&self) -> Option { self.prelude } pub(crate) fn extern_prelude(&self) -> impl Iterator + '_ { self.data.extern_prelude.iter().map(|(name, &def)| (name, def.into())) } pub(crate) fn macro_use_prelude(&self) -> impl Iterator + '_ { self.macro_use_prelude.iter().map(|(name, &def)| (name, def)) } pub fn module_id(&self, local_id: LocalModuleId) -> ModuleId { let block = self.block.map(|b| b.block); ModuleId { krate: self.krate, local_id, block } } pub fn crate_root(&self) -> CrateRootModuleId { CrateRootModuleId { krate: self.krate } } pub(crate) fn resolve_path( &self, db: &dyn DefDatabase, original_module: LocalModuleId, path: &ModPath, shadow: BuiltinShadowMode, expected_macro_subns: Option, ) -> (PerNs, Option) { let res = self.resolve_path_fp_with_macro( db, ResolveMode::Other, original_module, path, shadow, expected_macro_subns, ); (res.resolved_def, res.segment_index) } pub(crate) fn resolve_path_locally( &self, db: &dyn DefDatabase, original_module: LocalModuleId, path: &ModPath, shadow: BuiltinShadowMode, ) -> (PerNs, Option) { let res = self.resolve_path_fp_with_macro_single( db, ResolveMode::Other, original_module, path, shadow, None, // Currently this function isn't used for macro resolution. ); (res.resolved_def, res.segment_index) } /// Ascends the `DefMap` hierarchy and calls `f` with every `DefMap` and containing module. /// /// If `f` returns `Some(val)`, iteration is stopped and `Some(val)` is returned. If `f` returns /// `None`, iteration continues. pub(crate) fn with_ancestor_maps( &self, db: &dyn DefDatabase, local_mod: LocalModuleId, f: &mut dyn FnMut(&DefMap, LocalModuleId) -> Option, ) -> Option { if let Some(it) = f(self, local_mod) { return Some(it); } let mut block = self.block; while let Some(block_info) = block { let parent = block_info.parent.def_map(db, self.krate); if let Some(it) = f(&parent, block_info.parent.local_id) { return Some(it); } block = parent.block; } None } /// If this `DefMap` is for a block expression, returns the module containing the block (which /// might again be a block, or a module inside a block). pub fn parent(&self) -> Option { let BlockRelativeModuleId { block, local_id } = self.block?.parent; Some(ModuleId { krate: self.krate, block, local_id }) } /// Returns the module containing `local_mod`, either the parent `mod`, or the module (or block) containing /// the block, if `self` corresponds to a block expression. pub fn containing_module(&self, local_mod: LocalModuleId) -> Option { match self[local_mod].parent { Some(parent) => Some(self.module_id(parent)), None => { self.block.map( |BlockInfo { parent: BlockRelativeModuleId { block, local_id }, .. }| { ModuleId { krate: self.krate, block, local_id } }, ) } } } // FIXME: this can use some more human-readable format (ideally, an IR // even), as this should be a great debugging aid. pub fn dump(&self, db: &dyn DefDatabase) -> String { let mut buf = String::new(); let mut arc; let mut current_map = self; while let Some(block) = current_map.block { go(&mut buf, db, current_map, "block scope", Self::ROOT); buf.push('\n'); arc = block.parent.def_map(db, self.krate); current_map = &arc; } go(&mut buf, db, current_map, "crate", Self::ROOT); return buf; fn go( buf: &mut String, db: &dyn DefDatabase, map: &DefMap, path: &str, module: LocalModuleId, ) { format_to!(buf, "{}\n", path); map.modules[module].scope.dump(db.upcast(), buf); for (name, child) in map.modules[module].children.iter().sorted_by(|a, b| Ord::cmp(&a.0, &b.0)) { let path = format!("{path}::{}", name.display(db.upcast())); buf.push('\n'); go(buf, db, map, &path, *child); } } } pub fn dump_block_scopes(&self, db: &dyn DefDatabase) -> String { let mut buf = String::new(); let mut arc; let mut current_map = self; while let Some(block) = current_map.block { format_to!(buf, "{:?} in {:?}\n", block.block, block.parent); arc = block.parent.def_map(db, self.krate); current_map = &arc; } format_to!(buf, "crate scope\n"); buf } fn shrink_to_fit(&mut self) { // Exhaustive match to require handling new fields. let Self { _c: _, macro_use_prelude, diagnostics, modules, derive_helpers_in_scope, block: _, krate: _, prelude: _, data: _, } = self; macro_use_prelude.shrink_to_fit(); diagnostics.shrink_to_fit(); modules.shrink_to_fit(); derive_helpers_in_scope.shrink_to_fit(); for (_, module) in modules.iter_mut() { module.children.shrink_to_fit(); module.scope.shrink_to_fit(); } } /// Get a reference to the def map's diagnostics. pub fn diagnostics(&self) -> &[DefDiagnostic] { self.diagnostics.as_slice() } pub fn recursion_limit(&self) -> Option { self.data.recursion_limit } } impl ModuleData { pub(crate) fn new(origin: ModuleOrigin, visibility: Visibility) -> Self { ModuleData { origin, visibility, parent: None, children: FxHashMap::default(), scope: ItemScope::default(), } } /// Returns a node which defines this module. That is, a file or a `mod foo {}` with items. pub fn definition_source(&self, db: &dyn DefDatabase) -> InFile { self.origin.definition_source(db) } /// Same as [`definition_source`] but only returns the file id to prevent parsing the ASt. pub fn definition_source_file_id(&self) -> HirFileId { match self.origin { ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => { definition.into() } ModuleOrigin::Inline { definition, .. } => definition.file_id, ModuleOrigin::BlockExpr { block } => block.file_id, } } /// Returns a node which declares this module, either a `mod foo;` or a `mod foo {}`. /// `None` for the crate root or block. pub fn declaration_source(&self, db: &dyn DefDatabase) -> Option> { let decl = self.origin.declaration()?; let value = decl.to_node(db.upcast()); Some(InFile { file_id: decl.file_id, value }) } } #[derive(Debug, Clone, PartialEq, Eq)] pub enum ModuleSource { SourceFile(ast::SourceFile), Module(ast::Module), BlockExpr(ast::BlockExpr), } /// See `sub_namespace_match()`. #[derive(Clone, Copy, PartialEq, Eq)] pub enum MacroSubNs { /// Function-like macros, suffixed with `!`. Bang, /// Macros inside attributes, i.e. attribute macros and derive macros. Attr, } impl MacroSubNs { fn from_id(db: &dyn DefDatabase, macro_id: MacroId) -> Self { let expander = match macro_id { MacroId::Macro2Id(it) => it.lookup(db).expander, MacroId::MacroRulesId(it) => it.lookup(db).expander, MacroId::ProcMacroId(it) => { return match it.lookup(db).kind { ProcMacroKind::CustomDerive | ProcMacroKind::Attr => Self::Attr, ProcMacroKind::FuncLike => Self::Bang, }; } }; // Eager macros aren't *guaranteed* to be bang macros, but they *are* all bang macros currently. match expander { MacroExpander::Declarative | MacroExpander::BuiltIn(_) | MacroExpander::BuiltInEager(_) => Self::Bang, MacroExpander::BuiltInAttr(_) | MacroExpander::BuiltInDerive(_) => Self::Attr, } } } /// Quoted from [rustc]: /// Macro namespace is separated into two sub-namespaces, one for bang macros and /// one for attribute-like macros (attributes, derives). /// We ignore resolutions from one sub-namespace when searching names in scope for another. /// /// [rustc]: https://github.com/rust-lang/rust/blob/1.69.0/compiler/rustc_resolve/src/macros.rs#L75 fn sub_namespace_match(candidate: Option, expected: Option) -> bool { match (candidate, expected) { (Some(candidate), Some(expected)) => candidate == expected, _ => true, } }