When a glob import overriding the visibility of a previous glob import was not properly resolved when the items are only available in the next fixpoint iteration.
The bug was hidden until #18390.
Rollup of 7 pull requests
Successful merges:
- #133358 (Don't type error if we fail to coerce `Pin<T>` because it doesnt contain a ref)
- #133422 (Fix clobber_abi in RV32E and RV64E inline assembly)
- #133452 (Support predicate registers (clobber-only) in Hexagon inline assembly)
- #133463 (Fix handling of x18 in AArch64 inline assembly on ohos/trusty or with -Zfixed-x18)
- #133487 (fix confusing diagnostic for reserved `##`)
- #133557 (Small doc fixes in `rustc_codegen_ssa`)
- #133560 (Trim extra space in 'repeated `mut`' diagnostic)
r? `@ghost`
`@rustbot` modify labels: rollup
Use edition of `macro_rules` when compiling the macro
This changes the edition assigned to a macro_rules macro when it is compiled to use the edition of where the macro came from instead of the local crate's edition.
This fixes a problem when a macro_rules macro is created by a proc-macro. Previously that macro would be tagged with the local edition, which would cause problems with using the correct edition behavior inside the macro. For example, the check for unsafe attributes would cause errors in 2024 when using proc-macros from older editions.
This is partially related to https://github.com/rust-lang/rust/issues/132906. Unfortunately this is only a half fix for that issue. It fixes the error that happens in 2024, but does not fix the lint firing in 2021. I'm still trying to think of some way to fix that, but I'm running low on ideas.
Reduce integer `Display` implementation size
I was thinking about #128204 and how we could reduce the size of the code and just realized that we didn't need the `_fmt` method to be implemented on signed integers, which in turns allow to simplify greatly the macro call.
r? `@workingjubilee`
rustc: Fail fast when compiling a source file larger than 4 GiB
Currently if you try to compile a file that is larger than 4 GiB, `rustc` will first read the whole into memory before failing.
If we can read the metadata of the file, we can fail before reading the file.
Add `AsyncFn*` to the prelude in all editions
The general vibe is that we will most likely stabilize the `feature(async_closure)` *without* the `async Fn()` trait bound modifier.
Without `async Fn()` bound syntax, this necessitates users to spell the bound like `AsyncFn()`. Since `core::ops::AsyncFn` is not in the prelude, users will need to import these any time they actually want to use the trait. This seems annoying, so let's add these traits to the prelude unstably.
We're trying to work on the general vision of `async` trait bound modifier in general in: https://github.com/rust-lang/rfcs/pull/3710, however that RFC still needs more time for consensus to converge, and we've decided that the value that users get from calling the bound `async Fn()` is *not really* worth blocking landing async closures in general.
btree: don't leak value if destructor of key panics
This PR fixes a regression from https://github.com/rust-lang/rust/pull/84904.
The `BTreeMap` already attempts to handle panicking destructors of the key-value pairs by continuing to execute the remaining destructors after one destructor panicked. However, after #84904 the destructor of a value in a key-value pair gets skipped if the destructor of the key panics, only continuing with the next key-value pair. This PR reverts to the behavior before #84904 to also drop the corresponding value if the destructor of a key panics.
This avoids potential memory leaks and can fix the soundness of programs that rely on the destructors being executed (even though this should not be relied upon, because the std collections currently do not guarantee that the remaining elements are dropped after a panic in a destructor).
cc `@Amanieu` because you had opinions on panicking destructors