Resolve panic in `generate_delegate_methods`
Fixes#16276
This PR addresses two issues:
1. When using `PathTransform`, it searches for the node corresponding to the `path` in the `source_scope` during `make::fn_`. Therefore, we need to perform the transform before `make::fn_` (similar to the problem in issue #15804). Otherwise, even though the tokens are the same, their offsets (i.e., `span`) differ, resulting in the error "Can't find CONST_ARG@xxx."
2. As mentioned in the first point, `PathTransform` searches for the node corresponding to the `path` in the `source_scope`. Thus, when transforming paths, we should update nodes from right to left (i.e., use **reverse of preorder** (right -> left -> root) instead of **postorder** (left -> right -> root)). Reasons are as follows:
In the red-green tree (rowan), we do not store absolute ranges but instead store the length of each node and dynamically calculate offsets (spans). Therefore, when modifying the left-side node (such as nodes are inserted or deleted), it causes all right-side nodes' spans to change. This, in turn, leads to PathTransform being unable to find nodes with the same paths (due to different spans), resulting in errors.
fix: Fix `ast::Path::segments` implementation
calling `ast::Path::segments` on a qualifier currently returns all the segments of the top path instead of just the segments of the qualifier.
The issue can be summarized by the simple failing test below:
```rust
#[test]
fn path_segments() {
//use ra_ap_syntax::ast;
let path: ast::Path = ...; // e.g. `ast::Path` for "foo::bar::item".
let path_segments: Vec<_> = path.segments().collect();
let qualifier_segments: Vec<_> = path.qualifier().unwrap().segments().collect();
assert_eq!(path_segments.len(), qualifier_segments.len() + 1); // Fails because `LHS = RHS`.
}
```
This PR:
- Fixes the implementation of `ast::Path::segments`
- Fixes `ast::Path::segments` callers that either implicitly relied on behavior of previous implementation or exhibited other "wrong" behavior directly related to the result of `ast::Path::segments` (all callers have been reviewed, only one required modification)
- Removes unnecessary (and now unused) `ast::Path::segments` alternatives
internal: clean and enhance readability for `generate_delegate_trait`
Continue from #16112
This PR primarily involves some cleanup and simple refactoring work, including:
- Adding numerous comments to layer the code and explain the behavior of each step.
- Renaming some variables to make them more sensible.
- Simplify certain operations using a more elegant approach.
The goal is to make this intricate implementation clearer and facilitate future maintenance.
In addition to this, the PR also removes redundant `path_transform` operations for `type_gen_args`.
Taking the example of `impl Trait<T1> for S<S1>`, where `S1` is considered. The struct `S` must be in the file where the user triggers code actions, so there's no need for the `path_transform`. Furthermore, before performing the transform, we've already renamed `S1`, ensuring it won't clash with existing generics parameters. Therefore, there's no need to transform it.
* Extracted the function `for_unique_generic_name` that handling generics with identical names for reusability.
* Renamed `for_generic_params` to `for_impl_trait_as_generic` for clarity
* Added documentations for `for_impl_trait_as_generic` and `for_unique_generic_name`
fix: rewrite code_action `generate_delegate_trait`
I've made substantial enhancements to the "generate delegate trait" code action in rust-analyzer. Here's a summary of the changes:
#### Resolved the "Can’t find CONST_ARG@158..159 in AstIdMap" error
Fix#15804, fix#15968, fix#15108
The issue stemmed from an incorrect application of PathTransform in the original code. Previously, a new 'impl' was generated first and then transformed, causing PathTransform to fail in locating the correct AST node, resulting in an error. I rectified this by performing the transformation before generating the new 'impl' (using make::impl_trait), ensuring a step-by-step transformation of associated items.
#### Rectified generation of `Self` type
`generate_delegate_trait` is unable to properly handle trait with `Self` type.
Let's take the following code as an example:
```rust
trait Trait {
fn f() -> Self;
}
struct B {}
impl Trait for B {
fn f() -> B { B{} }
}
struct S {
b: B,
}
```
Here, if we implement `Trait` for `S`, the type of `f` should be `() -> Self`, i.e. `() -> S`. However we cannot automatically generate a function that constructs `S`.
To ensure that the code action doesn't generate delegate traits for traits with Self types, I add a function named `has_self_type` to handle it.
#### Extended support for generics in structs and fields within this code action
The former version of `generate_delegate_trait` cannot handle structs with generics properly. Here's an example:
```rust
struct B<T> {
a: T
}
trait Trait<T> {
fn f(a: T);
}
impl<T1, T2> Trait<T1> for B<T2> {
fn f(a: T1) -> T2 { self.a }
}
struct A {}
struct S {
b$0 : B<A>,
}
```
The former version will generates improper code:
```rust
impl<T1, T2> Trait<T1, T2> for S {
fn f(&self, a: T1) -> T1 {
<B as Trait<T1, T2>>::f( &self.b , a)
}
}
```
The rewritten version can handle generics properly:
```rust
impl<T1> Trait<T1> for S {
fn f(&self, a: T1) -> T1 {
<B<A> as Trait<T1>>::f(&self.b, a)
}
}
```
See more examples in added unit tests.
I enabled support for generic structs in `generate_delegate_trait` through the following steps (using the code example provided):
1. Initially, to prevent conflicts between the generic parameters in struct `S` and the ones in the impl of `B`, I renamed the generic parameters of `S`.
2. Then, since `B`'s parameters are instantiated within `S`, the original generic parameters of `B` needed removal within `S` (to avoid errors from redundant parameters). An important consideration here arises when Trait and B share parameters in `B`'s impl. In such cases, these shared generic parameters cannot be removed.
3. Next, I addressed the matching of types between `B`'s type in `S` and its type in the impl. Given that some generic parameters in the impl are instantiated in `B`, I replaced these parameters with their instantiated results using PathTransform. For instance, in the example provided, matching `B<A>` and `B<T2>`, where `T2` is instantiated as `A`, I replaced all occurrences of `T2` in the impl with `A` (i.e. apply the instantiated generic arguments to the params).
4. Finally, I performed transformations on each assoc item (also to prevent the initial issue) and handled redundant where clauses.
For a more detailed explanation, please refer to the code and comments. I welcome suggestions and any further questions!
fix: self type replacement in inline-function
Fix#16113, fix#16091
The problem described in this issue actually involves three bugs.
Firstly, when using `ted` to modify the syntax tree, the offset of nodes on the tree changes, which causes the syntax range information from `hir` to become invalid. Therefore, we need to edit the AST after the last usage for `usages_for_locals`.
The second issue is that when inserting nodes, it's necessary to use `clone_subtree` for duplication because the `ted::replace` operation essentially moves a node.
The third issue is that we should use `ancestors_with_macros` instead of `ancestors` to handle impl definition in macros.
I have fixed the three bugs mentioned above and added unit tests.
internal: Migrate assists to the structured snippet API, part 5
Continuing from #15874
Migrates the following assists:
- `extract_variable`
- `generate_function`
- `replace_is_some_with_if_let_some`
- `replace_is_ok_with_if_let_ok`
fix: no code action 'introduce_named_generic' for impl inside types
Fix#15734.
### Changes Made
- Find params in `ancestors` instead of just `parent`
- Added tests (`replace_impl_with_mut` and `replace_impl_inside`)
Fix incorrectly replacing references in macro invocation in "Convert to named struct" assist
Fixes#15630.
Complements #13647 (same assist but missed this one), #14920 (inverse action assist).
fix: resolve Self type references in delegate method assist
This PR makes the delegate method assist resolve any `Self` type references in the parameters or return type. It also works across macros such as the `uint_impl!` macro used for `saturating_mul` in the issue example.
Closes#14485
internal: Migrate assists to the structured snippet API, part 4
Continuing from #15260
Migrates the following assists:
- `add_turbo_fish`
- `add_type_ascription`
- `destructure_tuple_binding`
- `destructure_tuple_binding_in_subpattern`
I did this a while ago, but forgot to make a PR for the changes until now. 😅
Due to the way the current tree mutation api works, we need to collect
changes before we can apply them to the real syntax tree, and also can only
switch to a file once.
`destructure_tuple_binding_in_sub_pattern` also gets migrated even
though can't be used.