Remove "execute" bit from lock file permissions
Previously, flock would set the "execute" bit on Rust lock files. That makes no sense.
This patch clears the "execute" bit on Rust lock files.
See issue #102531.
Add `Box<[T; N]>: TryFrom<Vec<T>>`
We have `[T; N]: TryFrom<Vec<T>>` (#76310) and `Box<[T; N]>: TryFrom<Box<[T]>>`, but not this combination.
`vec.into_boxed_slice().try_into()` isn't quite a replacement for this, as that'll reallocate unnecessarily in the error case.
**Insta-stable, so needs an FCP**
(I tried to make this work with `, A`, but that's disallowed because of `#[fundamental]` https://github.com/rust-lang/rust/issues/29635#issuecomment-1247598385)
feat: Diagnose some incorrect usages of the question mark operator
Trying to figure out how the type stuff in r-a works some more, I think I am doing this correct here but I am not quite sure :)
Bump chalk
There's a bug in current chalk that prevents us from properly supporting GATs, which is supposed to be fixed in v0.86. Note the following:
- v0.86 is only going to be released next Sunday so I'll keep this PR as draft until then.
- This doesn't compile without https://github.com/rust-lang/chalk/pull/779, which I hope will be included in v0.86. I confirmed this compiles with it locally.
Two breaking changes from v0.84:
- `TypeFolder` has been split into `TypeFolder` and `FallibleTypeFolder` (https://github.com/rust-lang/chalk/pull/772)
- `ProjectionTy::self_type_parameter()` has been removed (https://github.com/rust-lang/chalk/pull/778)
Two breaking changes:
- `TypeFolder` has been split into `TypeFolder` and `FallibleTypeFolder`
- `ProjectionTy::self_type_parameter()` has been removed
Fix missing explanation of where the borrowed reference is used when the same borrow occurs multiple times due to loop iterations
Fix#99824.
Problem of the issue:
If a borrow occurs in a loop, the borrowed reference could be invalidated at the same place at next iteration of the loop. When this happens, the point where the borrow occurs is the same as the intervening point that might invalidate the reference in the loop. This causes a problem for the current code finding the point where the resulting reference is used, so that the explanation of the cause will be missing. As the second point of "explain all errors in terms of three points" (see [leveraging intuition framing errors in terms of points"](https://rust-lang.github.io/rfcs/2094-nll.html#leveraging-intuition-framing-errors-in-terms-of-points), this explanation is very helpful for user to understand the error.
In the current implementation, the searching region for finding the location where the borrowed reference is used is limited to between the place where the borrow occurs and the place where the reference is invalidated. If those two places happen to be the same, which indicates that the borrow and invalidation occur at the same place in a loop, the search will fail.
One solution to the problem is when these two places are the same, find the terminator of the loop, and then use the location of the loop terminator instead of the location of the borrow for the region to find the place where the borrowed reference is used.
sync thread_local key conditions exactly with what the macro uses
This makes the `cfg` in `mod.rs` syntactically the same as those in `local.rs`.
I don't think this should actually change anything, but seems better to be consistent?
I looked into this due to https://github.com/rust-lang/rust/issues/102549, but this PR would make it *less* likely that `__OsLocalKeyInner` is going to get provided, so this cannot help with that issue.
r? `@thomcc`
Detect and reject out-of-range integers in format string literals
Until now out-of-range integers in format string literals were silently ignored. They wrapped around to zero at usize::MAX, producing unexpected results.
When using debug builds of rustc, such integers in format string literals even cause an 'attempt to add with overflow' panic in rustc.
Fix this by producing an error diagnostic for integers in format string literals which do not fit into usize.
Fixes#102528
Optimize TLS on Windows
This implements the suggestion in the current TLS code to embed the linked list of destructors in the `StaticKey` structure to save allocations. Additionally, locking is avoided when no destructor needs to be run. By using one Windows-provided `Once` per key instead of a global lock, locking is more finely-grained (this unblocks #100579).
Allow compiling the `wasm32-wasi` std library with atomics
The issue #102157 demonstrates how currently the `-Z build-std` option will fail when re-compiling the standard library with `RUSTFLAGS` like `RUSTFLAGS="-C target-feature=+atomics,+bulk-memory -C link-args=--shared-memory"`. This change attempts to resolve those build issues by depending on the the WebAssembly `futex` module and providing an implementation for `env_lock`. Fixes#102157.