Report errors in jobserver inherited through environment variables
This pr attempts to catch situations, when jobserver exists, but is not being inherited.
r? `@petrochenkov`
move exposed-provenance APIs into separate feature gate
We have already stated explicitly for all the 'exposed' functions that
> Using this method means that code is *not* following strict provenance rules.
However, they were part of the same feature gate and still described as part of the strict provenance experiment. Unfortunately, their semantics are much less clear and certainly nowhere near stabilization, so in preparation for an attempt to stabilize the strict provenance APIs, I suggest we split the things related to "exposed" into their own feature gate. I also used this opportunity to better explain how Exposed Provenance fits into the larger plan here: this is *one possible candidate* for `as` semantics, but we don't know if it is actually viable, so we can't really promise that it is equivalent to `as`. If it works out we probably want to make `as` equivalent to the 'exposed' APIs; if it doesn't, we will remove them again and try to find some other semantics for `as`.
Add substring API for `OsStr`
This adds a method for taking a substring of an `OsStr`, which in combination with [`OsStr::as_encoded_bytes()`](https://doc.rust-lang.org/std/ffi/struct.OsStr.html#method.as_encoded_bytes) makes it possible to implement most string operations in safe code.
API:
```rust
impl OsStr {
pub fn slice_encoded_bytes<R: ops::RangeBounds<usize>>(&self, range: R) -> &Self;
}
```
Motivation, examples and research at https://github.com/rust-lang/libs-team/issues/306.
Tracking issue: #118485
cc `@epage`
r? libs-api
Handle recursion limit for subtype and well-formed predicates
Adds a recursion limit check for subtype predicates and well-formed predicates.
`-Ztrait-solver=next` currently panics with unimplemented for these cases.
These cases are arguably bugs in the occurs check but:
- I could not find a simple way to fix the occurs check
- There should still be a recursion limit check to prevent hangs anyway.
closes#117151
r? types
Restore `#![no_builtins]` crates participation in LTO.
After #113716, we can make `#![no_builtins]` crates participate in LTO again.
`#![no_builtins]` with LTO does not result in undefined references to the error. I believe this type of issue won't happen again.
Fixes#72140. Fixes#112245. Fixes#110606. Fixes#105734. Fixes#96486. Fixes#108853. Fixes#108893. Fixes#78744. Fixes#91158. Fixes https://github.com/rust-lang/cargo/issues/10118. Fixes https://github.com/rust-lang/compiler-builtins/issues/347.
The `nightly-2023-07-20` version does not always reproduce problems due to changes in compiler-builtins, core, and user code. That's why this issue recurs and disappears.
Some issues were not tested due to the difficulty of reproducing them.
r? pnkfelix
cc `@bjorn3` `@japaric` `@alexcrichton` `@Amanieu`
Stabilize C string literals
RFC: https://rust-lang.github.io/rfcs/3348-c-str-literal.html
Tracking issue: https://github.com/rust-lang/rust/issues/105723
Documentation PR (reference manual): https://github.com/rust-lang/reference/pull/1423
# Stabilization report
Stabilizes C string and raw C string literals (`c"..."` and `cr#"..."#`), which are expressions of type [`&CStr`](https://doc.rust-lang.org/stable/core/ffi/struct.CStr.html). Both new literals require Rust edition 2021 or later.
```rust
const HELLO: &core::ffi::CStr = c"Hello, world!";
```
C strings may contain any byte other than `NUL` (`b'\x00'`), and their in-memory representation is guaranteed to end with `NUL`.
## Implementation
Originally implemented by PR https://github.com/rust-lang/rust/pull/108801, which was reverted due to unintentional changes to lexer behavior in Rust editions < 2021.
The current implementation landed in PR https://github.com/rust-lang/rust/pull/113476, which restricts C string literals to Rust edition >= 2021.
## Resolutions to open questions from the RFC
* Adding C character literals (`c'.'`) of type `c_char` is not part of this feature.
* Support for `c"..."` literals does not prevent `c'.'` literals from being added in the future.
* C string literals should not be blocked on making `&CStr` a thin pointer.
* It's possible to declare constant expressions of type `&'static CStr` in stable Rust (as of v1.59), so C string literals are not adding additional coupling on the internal representation of `CStr`.
* The unstable `concat_bytes!` macro should not accept `c"..."` literals.
* C strings have two equally valid `&[u8]` representations (with or without terminal `NUL`), so allowing them to be used in `concat_bytes!` would be ambiguous.
* Adding a type to represent C strings containing valid UTF-8 is not part of this feature.
* Support for a hypothetical `&Utf8CStr` may be explored in the future, should such a type be added to Rust.
Refactor NLL constraint generation and most of polonius fact generation
As discussed in #118175, NLL "constraint generation" is only about liveness, but currently also contains legacy polonius fact generation. The latter is quite messy, and this PR cleans this up to prepare for its future removal:
- splits polonius fact generation out of NLL constraint generation
- merges NLL constraint generation to its more natural place, liveness
- extracts all of the polonius fact generation from NLLs apart from MIR typeck (as fact generation is somewhat in a single place there already, but should be cleaned up) into its own explicit module, with a single entry point instead of many.
There should be no behavior changes, and tests seem to behave the same as master: without polonius, with legacy polonius, with the in-tree polonius.
I've split everything into smaller logical commits for easier review, as it required quite a bit of code to be split and moved around, but it should all be trivial changes.
r? `@matthewjasper`
Add thinlto support to codegen, assembly and coverage tests
Using `--emit=llvm-ir` with thinlto usually result in multiple IR files.
Resolve test case failure issue reported in #113923.
miri: add test checking that aggregate assignments reset memory to uninit
Also, `write_aggregate` is really just a helper for evaluating `Aggregate` rvalues, so it should be in `step.rs`, not `place.rs`. Also factor out `Repeat` rvalues into their own function while we are at it.
r? `@saethlin`
Fixes https://github.com/rust-lang/miri/issues/3195
utilize stdlib debug assertion status in compiletest
Implemented a new flag `--with-debug-assertions` on compiletest to pass the stdlib debug assertion status from bootstrap.
Resolves#115171
Use `usize::repeat_u8` instead of implementing `repeat_byte` in `memchr.rs`
It's simpler that way and the tricks don't actually make a difference: https://godbolt.org/z/zrvYY1dGx
Cut code size for feature hashing
This locally cuts ~32 kB of .text instructions.
This isn't really a clear win in terms of readability. IMO the code size benefits are worth it (even if they're not necessarily present in the x86_64 hyperoptimized build, I expect them to translate similarly to other platforms). Ultimately there's lots of "small ish" low hanging fruit like this that I'm seeing that seems worth tackling to me, and could translate into larger wins in aggregate.
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
effects: Run `enforce_context_effects` for all method calls
So that we also perform checks when overloaded `PartialEq`s are called.
r? `@compiler-errors`
Do not erase late bound regions when selecting inherent associated types
In the fix for #97156 we would want the following code:
```rust
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Foo<T>(T);
impl Foo<fn(&'static ())> {
type Assoc = u32;
}
trait Other {}
impl Other for u32 {}
// FIXME(inherent_associated_types): Avoid emitting two diagnostics (they only differ in span).
// FIXME(inherent_associated_types): Enhancement: Spruce up the diagnostic by saying something like
// "implementation is not general enough" as is done for traits via
// `try_report_trait_placeholder_mismatch`.
fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
//~^ ERROR mismatched types
//~| ERROR mismatched types
fn main() {}
```
to fail with ...
```
error[E0220]: associated type `Assoc` not found for `Foo<for<'a> fn(&'a ())>` in the current scope
--> tests/ui/associated-inherent-types/issue-109789.rs:18:36
|
4 | struct Foo<T>(T);
| ------------- associated item `Assoc` not found for this struct
...
18 | fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
| ^^^^^ associated item not found in `Foo<for<'a> fn(&'a ())>`
|
= note: the associated type was found for
- `Foo<fn(&'static ())>`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0220`.
```
This PR fixes the ICE we are currently getting "was a subtype of Foo<Binder(fn(&ReStatic ()), [])> during selection but now it is not"
Also fixes#112631
r? `@lcnr`
Rollup of 4 pull requests
Successful merges:
- #118095 (Enable the Arm Cortex-A53 errata mitigation on aarch64-unknown-none)
- #118340 (Use helper functions in `pretty.rs` instead of accessing the `Cell`s manually)
- #118358 (make const tests independent of std debug assertions)
- #118359 (Suggest swapping the order of `ref` and `box`)
r? `@ghost`
`@rustbot` modify labels: rollup
Refactor borrowck liveness values
This PR starts cleaning up `rustc_borrowck`, in particular around liveness values:
- refactors simple names that make no sense anymore: either referring to older structures using region elements, or to bitset containers and values.
- improves comments and fixes others
- removes unused return values and unneeded generic arguments
r? `@matthewjasper`
fix: add fallback for completion label details
This PR adds a fallback to a previous implementation in a case when the label detail field isn't supported by LSP client and the support isn't reported by the LSP initialize request. In this case additional info about trait and aliases would be merged into the label field as it was before the #15956 PR.
feat: make `let_binding_suggestion` more reasonable
This is my first PR for rustc, which trying to fix https://github.com/rust-lang/rust/issues/117894, I am not familiar with some internal api so maybe some modification here isn't the way to go, appreciated for any review suggestion.
editor/code: add option to suppress error notifications
Fixes https://github.com/rust-lang/rust-analyzer/issues/14193
- Added the `rust-analyzer.showRequestFailedErrorNotification` configuration option, which defaults to `true`
- If `rust-analyzer.showRequestFailedErrorNotification` is set to `true`, the current behavior is preserved.
- If `rust-analyzer.showRequestFailedErrorNotification` is set to `false`, no error toasts will be displayed for any of the failed requests caused by panics in r-a. This _only_ applies to events that are triggered "implicitly", such as `textDocument/hover`.
To test this, you can manually introduce a panic in one of the language server LSP handlers for non-command events. I added an explicit `panic!()` in the `textDocument/hover` event handler:
#### `rust-analyzer.showRequestFailedErrorNotification` set to `true` (default)
[2023-11-07 17-17-48.webm](https://github.com/rust-lang/rust-analyzer/assets/1665677/d0408ab8-79d1-42cf-a4e7-94e99d9783ec)
#### `rust-analyzer.showRequestFailedErrorNotification` set to `false`
[2023-11-07 17-16-49.webm](https://github.com/rust-lang/rust-analyzer/assets/1665677/0496d8d0-fb53-4bc6-a279-1a47f412dbdb)
Fix tidy tripping up on untracked files with special characters in their name
Previously, the tidy tool would fault if an untracked file had a space or other special characters in its name. If there was an untracked file "foo bar", it would include the quoting in it's path and split on the first space, giving output like this:
`skip untracked path "foo during rustfmt invocations`