Speed up `Parser::expected_tokens`
The constant pushing/clearing of `Parser::expected_tokens` during parsing is slow. This PR speeds it up greatly.
r? `@estebank`
Make sure we handle `backwards_incompatible_lint` drops appropriately in drop elaboration
In #131326, a new kind of scheduled drop (`drop_kind: DropKind::Value` + `backwards_incompatible_lint: true`) was added so that we could insert a new kind of no-op MIR statement (`backward incompatible drop`) for linting purposes.
These drops were intended to have *no side-effects*, but drop elaboration code forgot to handle these drops specially and they were handled otherwise as normal drops in most of the code. This ends up being **unsound** since we insert more than one drop call for some values, which means that `Drop::drop` could be called more than once.
This PR fixes this by splitting out the `DropKind::ForLint` and adjusting the code. I'm not totally certain if all of the places I've adjusted are either reachable or correct, but I'm pretty certain that it's *more* correct than it was previously.
cc `@dingxiangfei2009`
r? nikomatsakis
Fixes#134482
Some destructor/drop related tweaks
Two random tweaks I got from investigating some stuff around drops in edition 2024:
1. Use the `TypingEnv` of the mir builder, rather than making it over again.
2. Rename the `id` field from `Scope` to `local_id`, to reflect that it's a local id, and remove the `item_local_id()` accessor which just returned the id field.
Forbid overwriting types in typeck
While trying to figure out some type setting logic in https://github.com/rust-lang/rust/pull/134248 I realized that we sometimes set a type twice. While hopefully that would have been the same type, we didn't ensure that at all and just silently accepted it. So now we reject setting it twice, unless errors are happening, then we don't care.
Best reviewed commit by commit.
No behaviour change is intended.
reduce compiler `Assemble` complexity
`compile::Assemble` is already complicated by its nature (as it handles core internals like recursive building logic, etc.) and also handles half of `LldWrapper` tool logic for no good reason since it should be done in the build step directly.
This change moves it there to reduce complexity of `compile::Assemble` logic.
Fix intra doc links not generated inside footnote definitions
Fixes#132208.
The problem was that we were running the `Footnote` "pass" before the `LinkReplacer` one. Sadly, the change is bigger than it should because we can't specialize the `Iterator` trait implementation, forcing me to add a new type to handle the other `Iterator` kind (the one which still has the `Range`).
r? ``@notriddle``
Variants::Single: do not use invalid VariantIdx for uninhabited enums
~~Stacked on top of https://github.com/rust-lang/rust/pull/133681, only the last commit is new.~~
Currently, `Variants::Single` for an empty enum contains a `VariantIdx` of 0; looking that up in the enum variant list will ICE. That's quite confusing. So let's fix that by adding a new `Variants::Empty` case for types that have 0 variants.
try-job: i686-msvc
Split up attribute parsing code and move data types to `rustc_attr_data_structures`
This change renames `rustc_attr` to `rustc_attr_parsing`, and splits up the parsing code. At the same time, all the data types used move to `rustc_attr_data_structures`. This is in preparation of also having a third crate: `rustc_attr_validation`
I initially envisioned this as two separate PRs, but I think doing it in one go reduces the number of ways others would have to rebase their changes on this. However, I can still split them.
r? `@oli-obk` (we already discussed how this is a first step in a larger plan)
For a more detailed plan on how attributes are going to change, see https://github.com/rust-lang/rust/issues/131229
Edit: this looks like a giant PR, but the changes are actually rather trivial. Each commit is reviewable on its own, and mostly moves code around. No new logic is added.
Remove queries from the driver interface
All uses of driver queries in the public api of rustc_driver have been removed in https://github.com/rust-lang/rust/pull/134130 already. This removes driver queries from rustc_interface and does a couple of cleanups around TyCtxt construction and entering enabled by this removal.
Finishes the removal of driver queries started with https://github.com/rust-lang/rust/pull/126834.
`UniqueRc` trait impls
UniqueRc tracking Issue: #112566
Stable traits: (i.e. impls behind only the `unique_rc_arc` feature gate)
* Support the same formatting as `Rc`:
* `fmt::Debug` and `fmt::Display` delegate to the pointee.
* `fmt::Pointer` prints the address of the pointee.
* Add explicit `!Send` and `!Sync` impls, to mirror `Rc`.
* Borrowing traits: `Borrow`, `BorrowMut`, `AsRef`, `AsMut`
* `Rc` does not implement `BorrowMut` and `AsMut`, but `UniqueRc` can.
* Unconditional `Unpin`, like other heap-allocated types.
* Comparison traits `(Partial)Ord` and `(Partial)Eq` delegate to the pointees.
* `PartialEq for UniqueRc` does not do `Rc`'s specialization shortcut for pointer equality when `T: Eq`, since by definition two `UniqueRc`s cannot share an allocation.
* `Hash` delegates to the pointee.
* `AsRawFd`, `AsFd`, `AsHandle`, `AsSocket` delegate to the pointee like `Rc`.
* Sidenote: The bounds on `T` for the existing `Pointer<T>` impls for specifically `AsRawFd` and `AsSocket` do not allow `T: ?Sized`. For the added `UniqueRc` impls I allowed `T: ?Sized` for all four traits, but I did not change the existing (stable) impls.
Unstable traits:
* `DispatchFromDyn`, allows using `UniqueRc<Self>` as a method receiver under `feature(arbitrary_self_types)`.
* Existing `PinCoerceUnsized for UniqueRc` is generalized to allow non-`Global` allocators, like `Rc`.
* `DerefPure`, allows using `UniqueRc` in deref-patterns under `feature(deref_patterns)`, like `Rc`.
For documentation, `Rc` only has documentation on the comparison traits' methods, so I copied/adapted the documentation for those, and left the rest without impl-specific docs.
~~Edit: Marked as draft while I figure out `UnwindSafe`.~~
Edit: Ignoring `UnwindSafe` for this PR
Bounds-check with PtrMetadata instead of Len in MIR
Rather than emitting `Len(*_n)` in array index bounds checks, emit `PtrMetadata(copy _n)` instead -- with some asterisks for arrays and `&mut` that need it to be done slightly differently.
We're getting pretty close to removing `Len` entirely, actually. I think just one more PR after this (for slice drop shims).
r? mir
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
Move impl constness into impl trait header
This PR is kind of the opposite of the rejected https://github.com/rust-lang/rust/pull/134114
Instead of moving more things into the `constness` query, we want to keep them where their corresponding hir nodes are lowered. So I gave this a spin for impls, which have an obvious place to be (the impl trait header). And surprisingly it's also a perf improvement (likely just slightly better query & cache usage).
The issue was that removing anything from the `constness` query makes it just return `NotConst`, which is wrong. So I had to change it to `bug!` out if used wrongly, and only then remove the impl blocks from the `constness` query. I think this change is good in general, because it makes using `constness` more robust (as can be seen by how few sites that had to be changed, so it was almost solely used specifically for the purpose of asking for functions' constness). The main thing where this change was not great was in clippy, which was using the `constness` query as a general DefId -> constness map. I added a `DefKind` filter in front of that. If it becomes a more common pattern we can always move that helper into rustc.
Switch inline(always) in core/src/fmt/rt.rs to plain inline
I have a vague memory of these being instantiated a lot. Let's ask perf.
Looks like this is an improvement!
We don't need `NonNull::as_ptr` debuginfo
In order to stop pessimizing the use of local variables in core, skip debug info for MIR temporaries in tiny (single-BB) functions.
For functions as simple as this -- `Pin::new`, etc -- nobody every actually wants debuginfo for them in the first place. They're more like intrinsics than real functions, and stepping over them is good.
Arbitrary self types v2: main compiler changes
This is the main PR in a series of PRs related to Arbitrary Self Types v2, tracked in #44874. Specifically this is step 7 of the plan [described here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688), for [RFC 3519](https://github.com/rust-lang/rfcs/pull/3519).
Overall this PR:
* Switches from the `Deref` trait to the new `Receiver` trait when the unstable `arbitrary_self_types` feature is enabled (the simple bit)
* Introduces new algorithms to spot "shadowing"; that is, the case where a newly-added method in an outer smart pointer might end up overriding a pre-existing method in the pointee (the complex bit). Most of this bit was explored in [this earlier perf-testing PR](https://github.com/rust-lang/rust/pull/127812#issuecomment-2236911900).
* Lots of tests
This should not break compatibility for:
* Stable users, where it should have no effect
* Users of the existing `arbitrary_self_types` feature (because we implement `Receiver` for `T: Deref`) _unless_ those folks have added methods which may shadow methods in inner types, which we no longer want to allow
Subsequent PRs will add better diagnostics.
It's probably easiest to review this commit-by-commit.
r? `@wesleywiser`