remove panics

This commit is contained in:
Josh Mcguigan 2020-04-04 18:02:27 -07:00
parent 8c378af721
commit b87b7a088f
2 changed files with 213 additions and 65 deletions

View file

@ -42,6 +42,10 @@ impl From<PatId> for PatIdOrWild {
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct MatchCheckNotImplemented;
pub type MatchCheckResult<T> = Result<T, MatchCheckNotImplemented>;
type PatStackInner = SmallVec<[PatIdOrWild; 2]>;
#[derive(Debug)]
pub(crate) struct PatStack(PatStackInner);
@ -104,42 +108,49 @@ impl PatStack {
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> Option<PatStack> {
match (self.head().as_pat(cx), constructor) {
) -> MatchCheckResult<Option<PatStack>> {
let result = match (self.head().as_pat(cx), constructor) {
(Pat::Tuple(ref pat_ids), Constructor::Tuple { arity }) => {
if pat_ids.len() != *arity {
return None;
}
None
} else {
Some(self.replace_head_with(pat_ids))
}
}
(Pat::Lit(_), Constructor::Bool(_)) => {
// for now we only support bool literals
Some(self.to_tail())
}
(Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)),
(Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)?),
(Pat::Path(_), Constructor::Enum(constructor)) => {
// enums with no associated data become `Pat::Path`
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
return None;
}
// enums with no associated data become `Pat::Path`
None
} else {
Some(self.to_tail())
}
}
(Pat::TupleStruct { args: ref pat_ids, .. }, Constructor::Enum(constructor)) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
return None;
}
None
} else {
Some(self.replace_head_with(pat_ids))
}
(Pat::Or(_), _) => unreachable!("we desugar or patterns so this should never happen"),
(a, b) => unimplemented!("{:?}, {:?}", a, b),
}
(Pat::Or(_), _) => unreachable!("we desugar or patterns so this should never happen"),
(_, _) => return Err(MatchCheckNotImplemented),
};
Ok(result)
}
fn expand_wildcard(&self, cx: &MatchCheckCtx, constructor: &Constructor) -> PatStack {
fn expand_wildcard(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> MatchCheckResult<PatStack> {
assert_eq!(
Pat::Wild,
self.head().as_pat(cx),
@ -154,7 +165,7 @@ impl PatStack {
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
VariantData::Tuple(struct_field_data) => struct_field_data.len(),
VariantData::Unit => 0,
x => unimplemented!("{:?}", x),
_ => return Err(MatchCheckNotImplemented),
}
}
};
@ -167,7 +178,7 @@ impl PatStack {
patterns.push(*pat);
}
PatStack::from_vec(patterns)
Ok(PatStack::from_vec(patterns))
}
}
@ -204,8 +215,19 @@ impl Matrix {
}
// Computes `S(constructor, self)`.
fn specialize_constructor(&self, cx: &MatchCheckCtx, constructor: &Constructor) -> Self {
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_constructor(cx, constructor)))
fn specialize_constructor(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> MatchCheckResult<Self> {
let mut new_matrix = Matrix::empty();
for pat in &self.0 {
if let Some(pat) = pat.specialize_constructor(cx, constructor)? {
new_matrix.push(cx, pat);
}
}
Ok(new_matrix)
}
fn collect<T: IntoIterator<Item = PatStack>>(cx: &MatchCheckCtx, iter: T) -> Self {
@ -239,37 +261,56 @@ pub struct MatchCheckCtx<'a> {
// don't think we can make that assumption here. How should that be handled?
//
// Perhaps check that validity before passing the patterns into this method?
pub(crate) fn is_useful(cx: &MatchCheckCtx, matrix: &Matrix, v: &PatStack) -> Usefulness {
dbg!(matrix);
dbg!(v);
pub(crate) fn is_useful(
cx: &MatchCheckCtx,
matrix: &Matrix,
v: &PatStack,
) -> MatchCheckResult<Usefulness> {
if v.is_empty() {
if matrix.is_empty() {
return Usefulness::Useful;
} else {
return Usefulness::NotUseful;
}
let result = if matrix.is_empty() { Usefulness::Useful } else { Usefulness::NotUseful };
return Ok(result);
}
if let Pat::Or(pat_ids) = v.head().as_pat(cx) {
let mut found_unimplemented = false;
let any_useful = pat_ids.iter().any(|&pat_id| {
let v = PatStack::from_pattern(pat_id);
is_useful(cx, matrix, &v) == Usefulness::Useful
match is_useful(cx, matrix, &v) {
Ok(Usefulness::Useful) => true,
Ok(Usefulness::NotUseful) => false,
_ => {
found_unimplemented = true;
false
}
}
});
return if any_useful { Usefulness::Useful } else { Usefulness::NotUseful };
return if any_useful {
Ok(Usefulness::Useful)
} else if found_unimplemented {
Err(MatchCheckNotImplemented)
} else {
Ok(Usefulness::NotUseful)
};
}
if let Some(constructor) = pat_constructor(cx, v.head()) {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.specialize_constructor(&cx, &constructor).expect("todo handle this case");
if let Some(constructor) = pat_constructor(cx, v.head())? {
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
let v = v
.specialize_constructor(&cx, &constructor)?
.expect("we know this can't fail because we get the constructor from `v.head()` above");
is_useful(&cx, &matrix, &v)
} else {
dbg!("expanding wildcard");
// expanding wildcard
let used_constructors: Vec<Constructor> =
matrix.heads().iter().filter_map(|&p| pat_constructor(cx, p)).collect();
let mut used_constructors: Vec<Constructor> = vec![];
for pat in matrix.heads() {
if let Some(constructor) = pat_constructor(cx, pat)? {
used_constructors.push(constructor);
}
}
// We assume here that the first constructor is the "correct" type. Since we
// only care about the "type" of the constructor (i.e. if it is a bool we
@ -278,7 +319,6 @@ pub(crate) fn is_useful(cx: &MatchCheckCtx, matrix: &Matrix, v: &PatStack) -> Us
// this is to use the match expressions type.
match &used_constructors.first() {
Some(constructor) if all_constructors_covered(&cx, constructor, &used_constructors) => {
dbg!("all constructors are covered");
// If all constructors are covered, then we need to consider whether
// any values are covered by this wildcard.
//
@ -286,43 +326,48 @@ pub(crate) fn is_useful(cx: &MatchCheckCtx, matrix: &Matrix, v: &PatStack) -> Us
// constructors are covered (`Some`/`None`), so we need
// to perform specialization to see that our wildcard will cover
// the `Some(false)` case.
let constructor =
matrix.heads().iter().filter_map(|&pat| pat_constructor(cx, pat)).next();
let mut constructor = None;
for pat in matrix.heads() {
if let Some(c) = pat_constructor(cx, pat)? {
constructor = Some(c);
break;
}
}
if let Some(constructor) = constructor {
dbg!("found constructor {:?}, specializing..", &constructor);
if let Constructor::Enum(e) = constructor {
// For enums we handle each variant as a distinct constructor, so
// here we create a constructor for each variant and then check
// usefulness after specializing for that constructor.
let any_useful = cx
.db
.enum_data(e.parent)
.variants
.iter()
.map(|(local_id, _)| {
let mut found_unimplemented = false;
for constructor in
cx.db.enum_data(e.parent).variants.iter().map(|(local_id, _)| {
Constructor::Enum(EnumVariantId { parent: e.parent, local_id })
})
.any(|constructor| {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.expand_wildcard(&cx, &constructor);
{
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
let v = v.expand_wildcard(&cx, &constructor)?;
is_useful(&cx, &matrix, &v) == Usefulness::Useful
});
match is_useful(&cx, &matrix, &v) {
Ok(Usefulness::Useful) => return Ok(Usefulness::Useful),
Ok(Usefulness::NotUseful) => continue,
_ => found_unimplemented = true,
};
}
if any_useful {
Usefulness::Useful
if found_unimplemented {
Err(MatchCheckNotImplemented)
} else {
Usefulness::NotUseful
Ok(Usefulness::NotUseful)
}
} else {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.expand_wildcard(&cx, &constructor);
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
let v = v.expand_wildcard(&cx, &constructor)?;
is_useful(&cx, &matrix, &v)
}
} else {
Usefulness::NotUseful
Ok(Usefulness::NotUseful)
}
}
_ => {
@ -345,30 +390,32 @@ enum Constructor {
Enum(EnumVariantId),
}
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> Option<Constructor> {
match pat.as_pat(cx) {
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> MatchCheckResult<Option<Constructor>> {
let res = match pat.as_pat(cx) {
Pat::Wild => None,
Pat::Tuple(pats) => Some(Constructor::Tuple { arity: pats.len() }),
Pat::Lit(lit_expr) => {
// for now we only support bool literals
match cx.body.exprs[lit_expr] {
Expr::Literal(Literal::Bool(val)) => Some(Constructor::Bool(val)),
_ => unimplemented!(),
_ => return Err(MatchCheckNotImplemented),
}
}
Pat::TupleStruct { .. } | Pat::Path(_) => {
let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
let variant_id =
cx.infer.variant_resolution_for_pat(pat_id).unwrap_or_else(|| unimplemented!());
cx.infer.variant_resolution_for_pat(pat_id).ok_or(MatchCheckNotImplemented)?;
match variant_id {
VariantId::EnumVariantId(enum_variant_id) => {
Some(Constructor::Enum(enum_variant_id))
}
_ => unimplemented!(),
_ => return Err(MatchCheckNotImplemented),
}
}
x => unimplemented!("{:?} not yet implemented", x),
}
_ => return Err(MatchCheckNotImplemented),
};
Ok(res)
}
fn all_constructors_covered(
@ -613,6 +660,34 @@ mod tests {
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_binding_missing_arms() {
let content = r"
fn test_fn() {
match (false, true) {
(true, _x) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_bools_binding_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true) {
(true, _x) => {},
(false, true) => {},
(false, false) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_arms() {
let content = r"
@ -941,4 +1016,74 @@ mod false_negatives {
// match the type of the match expression.
check_no_diagnostic(content);
}
#[test]
fn mismatched_types_with_different_arity() {
let content = r"
fn test_fn() {
match (true, false) {
(true, false, true) => (),
(true) => (),
}
}
";
// This is a false negative.
// We don't currently check that the match arms actually
// match the type of the match expression. This test
// checks to ensure we don't panic when the code we are
// checking is malformed in such a way that the arity of the
// constructors doesn't match.
check_no_diagnostic(content);
}
#[test]
fn integers() {
let content = r"
fn test_fn() {
match 5 {
10 => (),
11..20 => (),
}
}
";
// This is a false negative.
// We don't currently check integer exhaustiveness.
check_no_diagnostic(content);
}
#[test]
fn enum_record() {
let content = r"
enum Either {
A { foo: u32 },
B,
}
fn test_fn() {
match Either::B {
Either::A { foo: 5 } => (),
}
}
";
// This is a false negative.
// We don't currently handle enum record types.
check_no_diagnostic(content);
}
#[test]
fn enum_not_in_scope() {
let content = r"
fn test_fn() {
match Foo::Bar {
Foo::Baz => (),
}
}
";
// This is a false negative.
// The enum is not in scope so we don't perform exhaustiveness checking.
check_no_diagnostic(content);
}
}

View file

@ -90,9 +90,12 @@ impl<'a, 'b> ExprValidator<'a, 'b> {
}
match is_useful(&cx, &seen, &PatStack::from_wild()) {
Usefulness::Useful => (),
Ok(Usefulness::Useful) => (),
// if a wildcard pattern is not useful, then all patterns are covered
Usefulness::NotUseful => return,
Ok(Usefulness::NotUseful) => return,
// this path is for unimplemented checks, so we err on the side of not
// reporting any errors
_ => return,
}
if let Ok(source_ptr) = source_map.expr_syntax(id) {