missing match arms diagnostic

This commit is contained in:
Josh Mcguigan 2020-03-24 04:40:58 -07:00
parent b7e5d94bda
commit 8c378af721
12 changed files with 1048 additions and 11 deletions

1
Cargo.lock generated
View file

@ -995,6 +995,7 @@ dependencies = [
"ra_prof",
"ra_syntax",
"rustc-hash",
"smallvec",
"stdx",
"test_utils",
]

View file

@ -1,4 +1,4 @@
//! FIXME: write short doc here
pub use hir_def::diagnostics::UnresolvedModule;
pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink};
pub use hir_ty::diagnostics::{MissingFields, MissingOkInTailExpr, NoSuchField};
pub use hir_ty::diagnostics::{MissingFields, MissingMatchArms, MissingOkInTailExpr, NoSuchField};

View file

@ -9,6 +9,7 @@ doctest = false
[dependencies]
arrayvec = "0.5.1"
smallvec = "1.2.0"
ena = "0.13.1"
log = "0.4.8"
rustc-hash = "1.1.0"

View file

@ -0,0 +1,944 @@
//! This module implements match statement exhaustiveness checking and usefulness checking
//! for match arms.
//!
//! It is modeled on the rustc module `librustc_mir_build::hair::pattern::_match`, which
//! contains very detailed documentation about the match checking algorithm.
use std::sync::Arc;
use smallvec::{smallvec, SmallVec};
use crate::{
db::HirDatabase,
expr::{Body, Expr, Literal, Pat, PatId},
InferenceResult,
};
use hir_def::{adt::VariantData, EnumVariantId, VariantId};
#[derive(Debug, Clone, Copy)]
enum PatIdOrWild {
PatId(PatId),
Wild,
}
impl PatIdOrWild {
fn as_pat(self, cx: &MatchCheckCtx) -> Pat {
match self {
PatIdOrWild::PatId(id) => cx.body.pats[id].clone(),
PatIdOrWild::Wild => Pat::Wild,
}
}
fn as_id(self) -> Option<PatId> {
match self {
PatIdOrWild::PatId(id) => Some(id),
PatIdOrWild::Wild => None,
}
}
}
impl From<PatId> for PatIdOrWild {
fn from(pat_id: PatId) -> Self {
Self::PatId(pat_id)
}
}
type PatStackInner = SmallVec<[PatIdOrWild; 2]>;
#[derive(Debug)]
pub(crate) struct PatStack(PatStackInner);
impl PatStack {
pub(crate) fn from_pattern(pat_id: PatId) -> PatStack {
Self(smallvec!(pat_id.into()))
}
pub(crate) fn from_wild() -> PatStack {
Self(smallvec!(PatIdOrWild::Wild))
}
fn from_slice(slice: &[PatIdOrWild]) -> PatStack {
Self(SmallVec::from_slice(slice))
}
fn from_vec(v: PatStackInner) -> PatStack {
Self(v)
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn head(&self) -> PatIdOrWild {
self.0[0]
}
fn get_head(&self) -> Option<PatIdOrWild> {
self.0.first().copied()
}
fn to_tail(&self) -> PatStack {
Self::from_slice(&self.0[1..])
}
fn replace_head_with(&self, pat_ids: &[PatId]) -> PatStack {
let mut patterns: PatStackInner = smallvec![];
for pat in pat_ids {
patterns.push((*pat).into());
}
for pat in &self.0[1..] {
patterns.push(*pat);
}
PatStack::from_vec(patterns)
}
// Computes `D(self)`.
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Option<PatStack> {
if matches!(self.head().as_pat(cx), Pat::Wild) {
Some(self.to_tail())
} else {
None
}
}
// Computes `S(constructor, self)`.
fn specialize_constructor(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> Option<PatStack> {
match (self.head().as_pat(cx), constructor) {
(Pat::Tuple(ref pat_ids), Constructor::Tuple { arity }) => {
if pat_ids.len() != *arity {
return None;
}
Some(self.replace_head_with(pat_ids))
}
(Pat::Lit(_), Constructor::Bool(_)) => {
// for now we only support bool literals
Some(self.to_tail())
}
(Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)),
(Pat::Path(_), Constructor::Enum(constructor)) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
return None;
}
// enums with no associated data become `Pat::Path`
Some(self.to_tail())
}
(Pat::TupleStruct { args: ref pat_ids, .. }, Constructor::Enum(constructor)) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
return None;
}
Some(self.replace_head_with(pat_ids))
}
(Pat::Or(_), _) => unreachable!("we desugar or patterns so this should never happen"),
(a, b) => unimplemented!("{:?}, {:?}", a, b),
}
}
fn expand_wildcard(&self, cx: &MatchCheckCtx, constructor: &Constructor) -> PatStack {
assert_eq!(
Pat::Wild,
self.head().as_pat(cx),
"expand_wildcard must only be called on PatStack with wild at head",
);
let mut patterns: PatStackInner = smallvec![];
let arity = match constructor {
Constructor::Bool(_) => 0,
Constructor::Tuple { arity } => *arity,
Constructor::Enum(e) => {
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
VariantData::Tuple(struct_field_data) => struct_field_data.len(),
VariantData::Unit => 0,
x => unimplemented!("{:?}", x),
}
}
};
for _ in 0..arity {
patterns.push(PatIdOrWild::Wild);
}
for pat in &self.0[1..] {
patterns.push(*pat);
}
PatStack::from_vec(patterns)
}
}
#[derive(Debug)]
pub(crate) struct Matrix(Vec<PatStack>);
impl Matrix {
pub(crate) fn empty() -> Self {
Self(vec![])
}
pub(crate) fn push(&mut self, cx: &MatchCheckCtx, row: PatStack) {
// if the pattern is an or pattern it should be expanded
if let Some(Pat::Or(pat_ids)) = row.get_head().map(|pat_id| pat_id.as_pat(cx)) {
for pat_id in pat_ids {
self.0.push(PatStack::from_pattern(pat_id));
}
} else {
self.0.push(row);
}
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn heads(&self) -> Vec<PatIdOrWild> {
self.0.iter().map(|p| p.head()).collect()
}
// Computes `D(self)`.
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Self {
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_wildcard(cx)))
}
// Computes `S(constructor, self)`.
fn specialize_constructor(&self, cx: &MatchCheckCtx, constructor: &Constructor) -> Self {
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_constructor(cx, constructor)))
}
fn collect<T: IntoIterator<Item = PatStack>>(cx: &MatchCheckCtx, iter: T) -> Self {
let mut matrix = Matrix::empty();
for pat in iter {
// using push ensures we expand or-patterns
matrix.push(cx, pat);
}
matrix
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Usefulness {
Useful,
NotUseful,
}
pub struct MatchCheckCtx<'a> {
pub body: Arc<Body>,
pub match_expr: &'a Expr,
pub infer: Arc<InferenceResult>,
pub db: &'a dyn HirDatabase,
}
// see src/librustc_mir_build/hair/pattern/_match.rs
// It seems the rustc version of this method is able to assume that all the match arm
// patterns are valid (they are valid given a particular match expression), but I
// don't think we can make that assumption here. How should that be handled?
//
// Perhaps check that validity before passing the patterns into this method?
pub(crate) fn is_useful(cx: &MatchCheckCtx, matrix: &Matrix, v: &PatStack) -> Usefulness {
dbg!(matrix);
dbg!(v);
if v.is_empty() {
if matrix.is_empty() {
return Usefulness::Useful;
} else {
return Usefulness::NotUseful;
}
}
if let Pat::Or(pat_ids) = v.head().as_pat(cx) {
let any_useful = pat_ids.iter().any(|&pat_id| {
let v = PatStack::from_pattern(pat_id);
is_useful(cx, matrix, &v) == Usefulness::Useful
});
return if any_useful { Usefulness::Useful } else { Usefulness::NotUseful };
}
if let Some(constructor) = pat_constructor(cx, v.head()) {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.specialize_constructor(&cx, &constructor).expect("todo handle this case");
is_useful(&cx, &matrix, &v)
} else {
dbg!("expanding wildcard");
// expanding wildcard
let used_constructors: Vec<Constructor> =
matrix.heads().iter().filter_map(|&p| pat_constructor(cx, p)).collect();
// We assume here that the first constructor is the "correct" type. Since we
// only care about the "type" of the constructor (i.e. if it is a bool we
// don't care about the value), this assumption should be valid as long as
// the match statement is well formed. But potentially a better way to handle
// this is to use the match expressions type.
match &used_constructors.first() {
Some(constructor) if all_constructors_covered(&cx, constructor, &used_constructors) => {
dbg!("all constructors are covered");
// If all constructors are covered, then we need to consider whether
// any values are covered by this wildcard.
//
// For example, with matrix '[[Some(true)], [None]]', all
// constructors are covered (`Some`/`None`), so we need
// to perform specialization to see that our wildcard will cover
// the `Some(false)` case.
let constructor =
matrix.heads().iter().filter_map(|&pat| pat_constructor(cx, pat)).next();
if let Some(constructor) = constructor {
dbg!("found constructor {:?}, specializing..", &constructor);
if let Constructor::Enum(e) = constructor {
// For enums we handle each variant as a distinct constructor, so
// here we create a constructor for each variant and then check
// usefulness after specializing for that constructor.
let any_useful = cx
.db
.enum_data(e.parent)
.variants
.iter()
.map(|(local_id, _)| {
Constructor::Enum(EnumVariantId { parent: e.parent, local_id })
})
.any(|constructor| {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.expand_wildcard(&cx, &constructor);
is_useful(&cx, &matrix, &v) == Usefulness::Useful
});
if any_useful {
Usefulness::Useful
} else {
Usefulness::NotUseful
}
} else {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.expand_wildcard(&cx, &constructor);
is_useful(&cx, &matrix, &v)
}
} else {
Usefulness::NotUseful
}
}
_ => {
// Either not all constructors are covered, or the only other arms
// are wildcards. Either way, this pattern is useful if it is useful
// when compared to those arms with wildcards.
let matrix = matrix.specialize_wildcard(&cx);
let v = v.to_tail();
is_useful(&cx, &matrix, &v)
}
}
}
}
#[derive(Debug)]
enum Constructor {
Bool(bool),
Tuple { arity: usize },
Enum(EnumVariantId),
}
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> Option<Constructor> {
match pat.as_pat(cx) {
Pat::Wild => None,
Pat::Tuple(pats) => Some(Constructor::Tuple { arity: pats.len() }),
Pat::Lit(lit_expr) => {
// for now we only support bool literals
match cx.body.exprs[lit_expr] {
Expr::Literal(Literal::Bool(val)) => Some(Constructor::Bool(val)),
_ => unimplemented!(),
}
}
Pat::TupleStruct { .. } | Pat::Path(_) => {
let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
let variant_id =
cx.infer.variant_resolution_for_pat(pat_id).unwrap_or_else(|| unimplemented!());
match variant_id {
VariantId::EnumVariantId(enum_variant_id) => {
Some(Constructor::Enum(enum_variant_id))
}
_ => unimplemented!(),
}
}
x => unimplemented!("{:?} not yet implemented", x),
}
}
fn all_constructors_covered(
cx: &MatchCheckCtx,
constructor: &Constructor,
used_constructors: &[Constructor],
) -> bool {
match constructor {
Constructor::Tuple { arity } => {
used_constructors.iter().any(|constructor| match constructor {
Constructor::Tuple { arity: used_arity } => arity == used_arity,
_ => false,
})
}
Constructor::Bool(_) => {
if used_constructors.is_empty() {
return false;
}
let covers_true =
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(true)));
let covers_false =
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(false)));
covers_true && covers_false
}
Constructor::Enum(e) => cx.db.enum_data(e.parent).variants.iter().all(|(id, _)| {
for constructor in used_constructors {
if let Constructor::Enum(e) = constructor {
if id == e.local_id {
return true;
}
}
}
false
}),
}
}
fn enum_variant_matches(cx: &MatchCheckCtx, pat_id: PatId, enum_variant_id: EnumVariantId) -> bool {
if let Some(VariantId::EnumVariantId(pat_variant_id)) =
cx.infer.variant_resolution_for_pat(pat_id)
{
if pat_variant_id.local_id == enum_variant_id.local_id {
return true;
}
}
false
}
#[cfg(test)]
mod tests {
pub(super) use insta::assert_snapshot;
pub(super) use ra_db::fixture::WithFixture;
pub(super) use crate::test_db::TestDB;
pub(super) fn check_diagnostic_message(content: &str) -> String {
TestDB::with_single_file(content).0.diagnostics().0
}
pub(super) fn check_diagnostic_with_no_fix(content: &str) {
let diagnostic_count = TestDB::with_single_file(content).0.diagnostics().1;
assert_eq!(1, diagnostic_count, "no diagnotic reported");
}
pub(super) fn check_no_diagnostic(content: &str) {
let diagnostic_count = TestDB::with_single_file(content).0.diagnostics().1;
assert_eq!(0, diagnostic_count, "expected no diagnostic, found one");
}
#[test]
fn empty_tuple_no_arms_diagnostic_message() {
let content = r"
fn test_fn() {
match () {
}
}
";
assert_snapshot!(
check_diagnostic_message(content),
@"\"{\\n }\": Missing match arm\n"
);
}
#[test]
fn empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match () {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match () {
() => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match (()) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match (()) {
(()) => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_two_empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match ((), ()) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_two_empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match ((), ()) {
((), ()) => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn bool_no_arms() {
let content = r"
fn test_fn() {
match false {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn bool_missing_arm() {
let content = r"
fn test_fn() {
match false {
true => {}
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn bool_no_diagnostic() {
let content = r"
fn test_fn() {
match false {
true => {}
false => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_no_arms() {
let content = r"
fn test_fn() {
match (false, true) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_bools_missing_arms() {
let content = r"
fn test_fn() {
match (false, true) {
(true, true) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_bools_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true) {
(true, true) => {},
(true, false) => {},
(false, true) => {},
(false, false) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_tuple_and_bools_missing_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
(true, ((), false)) => {},
(false, ((), true)) => {},
(false, ((), false)) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_wildcard_missing_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, _) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_tuple_and_bools_wildcard_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
(true, ((), false)) => {},
(false, _) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_no_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::A {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_missing_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::B {
Either::A => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_no_diagnostic() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::B {
Either::A => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_no_arms() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_containing_bool_missing_arms() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true) => (),
Either::B => (),
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_containing_bool_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true) => (),
Either::A(false) => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_with_wild_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::B => (),
_ => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_with_wild_2_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(_) => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_different_sizes_missing_arms() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(_) => (),
Either::B(false, _) => (),
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_different_sizes_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(_) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn or_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(true) | Either::A(false) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_enum_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
enum Either2 {
C,
D,
}
fn test_fn() {
match (Either::A(false), Either2::C) {
(Either::A(true), _) | (Either::A(false), _) => (),
(Either::B(true, _), Either2::C) => (),
(Either::B(false, _), Either2::C) => (),
(Either::B(_, _), Either2::D) => (),
}
}
";
check_no_diagnostic(content);
}
}
#[cfg(test)]
mod false_negatives {
//! The implementation of match checking here is a work in progress. As we roll this out, we
//! prefer false negatives to false positives (ideally there would be no false positives). This
//! test module should document known false negatives. Eventually we will have a complete
//! implementation of match checking and this module will be empty.
//!
//! The reasons for documenting known false negatives:
//!
//! 1. It acts as a backlog of work that can be done to improve the behavior of the system.
//! 2. It ensures the code doesn't panic when handling these cases.
use super::tests::*;
#[test]
fn mismatched_types() {
let content = r"
enum Either {
A,
B,
}
enum Either2 {
C,
D,
}
fn test_fn() {
match Either::A {
Either2::C => (),
Either2::D => (),
}
}
";
// This is a false negative.
// We don't currently check that the match arms actually
// match the type of the match expression.
check_no_diagnostic(content);
}
}

View file

@ -6,7 +6,7 @@ use hir_expand::{db::AstDatabase, name::Name, HirFileId, InFile};
use ra_syntax::{ast, AstNode, AstPtr, SyntaxNodePtr};
use stdx::format_to;
pub use hir_def::diagnostics::UnresolvedModule;
pub use hir_def::{diagnostics::UnresolvedModule, expr::MatchArm};
pub use hir_expand::diagnostics::{AstDiagnostic, Diagnostic, DiagnosticSink};
#[derive(Debug)]
@ -62,6 +62,24 @@ impl AstDiagnostic for MissingFields {
}
}
#[derive(Debug)]
pub struct MissingMatchArms {
pub file: HirFileId,
pub arms: AstPtr<ast::MatchArmList>,
}
impl Diagnostic for MissingMatchArms {
fn message(&self) -> String {
String::from("Missing match arm")
}
fn source(&self) -> InFile<SyntaxNodePtr> {
InFile { file_id: self.file, value: self.arms.into() }
}
fn as_any(&self) -> &(dyn Any + Send + 'static) {
self
}
}
#[derive(Debug)]
pub struct MissingOkInTailExpr {
pub file: HirFileId,

View file

@ -14,9 +14,10 @@ use rustc_hash::FxHashSet;
use crate::{
db::HirDatabase,
diagnostics::{MissingFields, MissingOkInTailExpr},
diagnostics::{MissingFields, MissingMatchArms, MissingOkInTailExpr},
utils::variant_data,
ApplicationTy, InferenceResult, Ty, TypeCtor,
_match::{is_useful, MatchCheckCtx, Matrix, PatStack, Usefulness},
};
pub use hir_def::{
@ -52,15 +53,63 @@ impl<'a, 'b> ExprValidator<'a, 'b> {
for e in body.exprs.iter() {
if let (id, Expr::RecordLit { path, fields, spread }) = e {
self.validate_record_literal(id, path, fields, *spread, db);
} else if let (id, Expr::Match { expr, arms }) = e {
self.validate_match(id, *expr, arms, db, self.infer.clone());
}
}
let body_expr = &body[body.body_expr];
if let Expr::Block { statements: _, tail: Some(t) } = body_expr {
if let Expr::Block { tail: Some(t), .. } = body_expr {
self.validate_results_in_tail_expr(body.body_expr, *t, db);
}
}
fn validate_match(
&mut self,
id: ExprId,
expr: ExprId,
arms: &[MatchArm],
db: &dyn HirDatabase,
infer: Arc<InferenceResult>,
) {
let (body, source_map): (Arc<Body>, Arc<BodySourceMap>) =
db.body_with_source_map(self.func.into());
let match_expr: &hir_def::expr::Expr = &body[expr];
let cx = MatchCheckCtx { body: body.clone(), match_expr, infer, db };
let pats = arms.iter().map(|arm| arm.pat);
let mut seen = Matrix::empty();
for pat in pats {
// If we had a NotUsefulMatchArm diagnostic, we could
// check the usefulness of each pattern as we added it
// to the matrix here.
let v = PatStack::from_pattern(pat);
seen.push(&cx, v);
}
match is_useful(&cx, &seen, &PatStack::from_wild()) {
Usefulness::Useful => (),
// if a wildcard pattern is not useful, then all patterns are covered
Usefulness::NotUseful => return,
}
if let Ok(source_ptr) = source_map.expr_syntax(id) {
if let Some(expr) = source_ptr.value.left() {
let root = source_ptr.file_syntax(db.upcast());
if let ast::Expr::MatchExpr(match_expr) = expr.to_node(&root) {
if let Some(arms) = match_expr.match_arm_list() {
self.sink.push(MissingMatchArms {
file: source_ptr.file_id,
arms: AstPtr::new(&arms),
})
}
}
}
}
}
fn validate_record_literal(
&mut self,
id: ExprId,

View file

@ -21,9 +21,13 @@ impl<'a> InferenceContext<'a> {
subpats: &[PatId],
expected: &Ty,
default_bm: BindingMode,
id: PatId,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
let var_data = def.map(|it| variant_data(self.db.upcast(), it));
if let Some(variant) = def {
self.write_variant_resolution(id.into(), variant);
}
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
@ -152,7 +156,7 @@ impl<'a> InferenceContext<'a> {
Ty::apply_one(TypeCtor::Ref(*mutability), subty)
}
Pat::TupleStruct { path: p, args: subpats } => {
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm, pat)
}
Pat::Record { path: p, args: fields } => {
self.infer_record_pat(p.as_ref(), fields, expected, default_bm, pat)

View file

@ -67,8 +67,16 @@ impl<'a> InferenceContext<'a> {
ValueNs::FunctionId(it) => it.into(),
ValueNs::ConstId(it) => it.into(),
ValueNs::StaticId(it) => it.into(),
ValueNs::StructId(it) => it.into(),
ValueNs::EnumVariantId(it) => it.into(),
ValueNs::StructId(it) => {
self.write_variant_resolution(id, it.into());
it.into()
}
ValueNs::EnumVariantId(it) => {
self.write_variant_resolution(id, it.into());
it.into()
}
};
let ty = self.db.value_ty(typable);

View file

@ -43,6 +43,7 @@ mod tests;
#[cfg(test)]
mod test_db;
mod marks;
mod _match;
use std::ops::Deref;
use std::sync::Arc;

View file

@ -105,8 +105,9 @@ impl TestDB {
}
// FIXME: don't duplicate this
pub fn diagnostics(&self) -> String {
pub fn diagnostics(&self) -> (String, u32) {
let mut buf = String::new();
let mut count = 0;
let crate_graph = self.crate_graph();
for krate in crate_graph.iter() {
let crate_def_map = self.crate_def_map(krate);
@ -133,13 +134,14 @@ impl TestDB {
let infer = self.infer(f.into());
let mut sink = DiagnosticSink::new(|d| {
format_to!(buf, "{:?}: {}\n", d.syntax_node(self).text(), d.message());
count += 1;
});
infer.add_diagnostics(self, f, &mut sink);
let mut validator = ExprValidator::new(f, infer, &mut sink);
validator.validate_body(self);
}
}
buf
(buf, count)
}
}

View file

@ -309,7 +309,8 @@ fn no_such_field_diagnostics() {
}
",
)
.diagnostics();
.diagnostics()
.0;
assert_snapshot!(diagnostics, @r###"
"baz: 62": no such field

View file

@ -101,6 +101,14 @@ pub(crate) fn diagnostics(db: &RootDatabase, file_id: FileId) -> Vec<Diagnostic>
fix,
})
})
.on::<hir::diagnostics::MissingMatchArms, _>(|d| {
res.borrow_mut().push(Diagnostic {
range: d.highlight_range(),
message: d.message(),
severity: Severity::Error,
fix: None,
})
})
.on::<hir::diagnostics::MissingOkInTailExpr, _>(|d| {
let node = d.ast(db);
let replacement = format!("Ok({})", node.syntax());
@ -291,7 +299,7 @@ mod tests {
fn check_no_diagnostic(content: &str) {
let (analysis, file_id) = single_file(content);
let diagnostics = analysis.diagnostics(file_id).unwrap();
assert_eq!(diagnostics.len(), 0);
assert_eq!(diagnostics.len(), 0, "expected no diagnostic, found one");
}
#[test]