rust-analyzer/crates/ra_hir_ty/src/_match.rs

945 lines
26 KiB
Rust
Raw Normal View History

2020-03-24 11:40:58 +00:00
//! This module implements match statement exhaustiveness checking and usefulness checking
//! for match arms.
//!
//! It is modeled on the rustc module `librustc_mir_build::hair::pattern::_match`, which
//! contains very detailed documentation about the match checking algorithm.
use std::sync::Arc;
use smallvec::{smallvec, SmallVec};
use crate::{
db::HirDatabase,
expr::{Body, Expr, Literal, Pat, PatId},
InferenceResult,
};
use hir_def::{adt::VariantData, EnumVariantId, VariantId};
#[derive(Debug, Clone, Copy)]
enum PatIdOrWild {
PatId(PatId),
Wild,
}
impl PatIdOrWild {
fn as_pat(self, cx: &MatchCheckCtx) -> Pat {
match self {
PatIdOrWild::PatId(id) => cx.body.pats[id].clone(),
PatIdOrWild::Wild => Pat::Wild,
}
}
fn as_id(self) -> Option<PatId> {
match self {
PatIdOrWild::PatId(id) => Some(id),
PatIdOrWild::Wild => None,
}
}
}
impl From<PatId> for PatIdOrWild {
fn from(pat_id: PatId) -> Self {
Self::PatId(pat_id)
}
}
type PatStackInner = SmallVec<[PatIdOrWild; 2]>;
#[derive(Debug)]
pub(crate) struct PatStack(PatStackInner);
impl PatStack {
pub(crate) fn from_pattern(pat_id: PatId) -> PatStack {
Self(smallvec!(pat_id.into()))
}
pub(crate) fn from_wild() -> PatStack {
Self(smallvec!(PatIdOrWild::Wild))
}
fn from_slice(slice: &[PatIdOrWild]) -> PatStack {
Self(SmallVec::from_slice(slice))
}
fn from_vec(v: PatStackInner) -> PatStack {
Self(v)
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn head(&self) -> PatIdOrWild {
self.0[0]
}
fn get_head(&self) -> Option<PatIdOrWild> {
self.0.first().copied()
}
fn to_tail(&self) -> PatStack {
Self::from_slice(&self.0[1..])
}
fn replace_head_with(&self, pat_ids: &[PatId]) -> PatStack {
let mut patterns: PatStackInner = smallvec![];
for pat in pat_ids {
patterns.push((*pat).into());
}
for pat in &self.0[1..] {
patterns.push(*pat);
}
PatStack::from_vec(patterns)
}
// Computes `D(self)`.
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Option<PatStack> {
if matches!(self.head().as_pat(cx), Pat::Wild) {
Some(self.to_tail())
} else {
None
}
}
// Computes `S(constructor, self)`.
fn specialize_constructor(
&self,
cx: &MatchCheckCtx,
constructor: &Constructor,
) -> Option<PatStack> {
match (self.head().as_pat(cx), constructor) {
(Pat::Tuple(ref pat_ids), Constructor::Tuple { arity }) => {
if pat_ids.len() != *arity {
return None;
}
Some(self.replace_head_with(pat_ids))
}
(Pat::Lit(_), Constructor::Bool(_)) => {
// for now we only support bool literals
Some(self.to_tail())
}
(Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)),
(Pat::Path(_), Constructor::Enum(constructor)) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
return None;
}
// enums with no associated data become `Pat::Path`
Some(self.to_tail())
}
(Pat::TupleStruct { args: ref pat_ids, .. }, Constructor::Enum(constructor)) => {
let pat_id = self.head().as_id().expect("we know this isn't a wild");
if !enum_variant_matches(cx, pat_id, *constructor) {
return None;
}
Some(self.replace_head_with(pat_ids))
}
(Pat::Or(_), _) => unreachable!("we desugar or patterns so this should never happen"),
(a, b) => unimplemented!("{:?}, {:?}", a, b),
}
}
fn expand_wildcard(&self, cx: &MatchCheckCtx, constructor: &Constructor) -> PatStack {
assert_eq!(
Pat::Wild,
self.head().as_pat(cx),
"expand_wildcard must only be called on PatStack with wild at head",
);
let mut patterns: PatStackInner = smallvec![];
let arity = match constructor {
Constructor::Bool(_) => 0,
Constructor::Tuple { arity } => *arity,
Constructor::Enum(e) => {
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
VariantData::Tuple(struct_field_data) => struct_field_data.len(),
VariantData::Unit => 0,
x => unimplemented!("{:?}", x),
}
}
};
for _ in 0..arity {
patterns.push(PatIdOrWild::Wild);
}
for pat in &self.0[1..] {
patterns.push(*pat);
}
PatStack::from_vec(patterns)
}
}
#[derive(Debug)]
pub(crate) struct Matrix(Vec<PatStack>);
impl Matrix {
pub(crate) fn empty() -> Self {
Self(vec![])
}
pub(crate) fn push(&mut self, cx: &MatchCheckCtx, row: PatStack) {
// if the pattern is an or pattern it should be expanded
if let Some(Pat::Or(pat_ids)) = row.get_head().map(|pat_id| pat_id.as_pat(cx)) {
for pat_id in pat_ids {
self.0.push(PatStack::from_pattern(pat_id));
}
} else {
self.0.push(row);
}
}
fn is_empty(&self) -> bool {
self.0.is_empty()
}
fn heads(&self) -> Vec<PatIdOrWild> {
self.0.iter().map(|p| p.head()).collect()
}
// Computes `D(self)`.
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Self {
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_wildcard(cx)))
}
// Computes `S(constructor, self)`.
fn specialize_constructor(&self, cx: &MatchCheckCtx, constructor: &Constructor) -> Self {
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_constructor(cx, constructor)))
}
fn collect<T: IntoIterator<Item = PatStack>>(cx: &MatchCheckCtx, iter: T) -> Self {
let mut matrix = Matrix::empty();
for pat in iter {
// using push ensures we expand or-patterns
matrix.push(cx, pat);
}
matrix
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Usefulness {
Useful,
NotUseful,
}
pub struct MatchCheckCtx<'a> {
pub body: Arc<Body>,
pub match_expr: &'a Expr,
pub infer: Arc<InferenceResult>,
pub db: &'a dyn HirDatabase,
}
// see src/librustc_mir_build/hair/pattern/_match.rs
// It seems the rustc version of this method is able to assume that all the match arm
// patterns are valid (they are valid given a particular match expression), but I
// don't think we can make that assumption here. How should that be handled?
//
// Perhaps check that validity before passing the patterns into this method?
pub(crate) fn is_useful(cx: &MatchCheckCtx, matrix: &Matrix, v: &PatStack) -> Usefulness {
dbg!(matrix);
dbg!(v);
if v.is_empty() {
if matrix.is_empty() {
return Usefulness::Useful;
} else {
return Usefulness::NotUseful;
}
}
if let Pat::Or(pat_ids) = v.head().as_pat(cx) {
let any_useful = pat_ids.iter().any(|&pat_id| {
let v = PatStack::from_pattern(pat_id);
is_useful(cx, matrix, &v) == Usefulness::Useful
});
return if any_useful { Usefulness::Useful } else { Usefulness::NotUseful };
}
if let Some(constructor) = pat_constructor(cx, v.head()) {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.specialize_constructor(&cx, &constructor).expect("todo handle this case");
is_useful(&cx, &matrix, &v)
} else {
dbg!("expanding wildcard");
// expanding wildcard
let used_constructors: Vec<Constructor> =
matrix.heads().iter().filter_map(|&p| pat_constructor(cx, p)).collect();
// We assume here that the first constructor is the "correct" type. Since we
// only care about the "type" of the constructor (i.e. if it is a bool we
// don't care about the value), this assumption should be valid as long as
// the match statement is well formed. But potentially a better way to handle
// this is to use the match expressions type.
match &used_constructors.first() {
Some(constructor) if all_constructors_covered(&cx, constructor, &used_constructors) => {
dbg!("all constructors are covered");
// If all constructors are covered, then we need to consider whether
// any values are covered by this wildcard.
//
// For example, with matrix '[[Some(true)], [None]]', all
// constructors are covered (`Some`/`None`), so we need
// to perform specialization to see that our wildcard will cover
// the `Some(false)` case.
let constructor =
matrix.heads().iter().filter_map(|&pat| pat_constructor(cx, pat)).next();
if let Some(constructor) = constructor {
dbg!("found constructor {:?}, specializing..", &constructor);
if let Constructor::Enum(e) = constructor {
// For enums we handle each variant as a distinct constructor, so
// here we create a constructor for each variant and then check
// usefulness after specializing for that constructor.
let any_useful = cx
.db
.enum_data(e.parent)
.variants
.iter()
.map(|(local_id, _)| {
Constructor::Enum(EnumVariantId { parent: e.parent, local_id })
})
.any(|constructor| {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.expand_wildcard(&cx, &constructor);
is_useful(&cx, &matrix, &v) == Usefulness::Useful
});
if any_useful {
Usefulness::Useful
} else {
Usefulness::NotUseful
}
} else {
let matrix = matrix.specialize_constructor(&cx, &constructor);
let v = v.expand_wildcard(&cx, &constructor);
is_useful(&cx, &matrix, &v)
}
} else {
Usefulness::NotUseful
}
}
_ => {
// Either not all constructors are covered, or the only other arms
// are wildcards. Either way, this pattern is useful if it is useful
// when compared to those arms with wildcards.
let matrix = matrix.specialize_wildcard(&cx);
let v = v.to_tail();
is_useful(&cx, &matrix, &v)
}
}
}
}
#[derive(Debug)]
enum Constructor {
Bool(bool),
Tuple { arity: usize },
Enum(EnumVariantId),
}
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> Option<Constructor> {
match pat.as_pat(cx) {
Pat::Wild => None,
Pat::Tuple(pats) => Some(Constructor::Tuple { arity: pats.len() }),
Pat::Lit(lit_expr) => {
// for now we only support bool literals
match cx.body.exprs[lit_expr] {
Expr::Literal(Literal::Bool(val)) => Some(Constructor::Bool(val)),
_ => unimplemented!(),
}
}
Pat::TupleStruct { .. } | Pat::Path(_) => {
let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
let variant_id =
cx.infer.variant_resolution_for_pat(pat_id).unwrap_or_else(|| unimplemented!());
match variant_id {
VariantId::EnumVariantId(enum_variant_id) => {
Some(Constructor::Enum(enum_variant_id))
}
_ => unimplemented!(),
}
}
x => unimplemented!("{:?} not yet implemented", x),
}
}
fn all_constructors_covered(
cx: &MatchCheckCtx,
constructor: &Constructor,
used_constructors: &[Constructor],
) -> bool {
match constructor {
Constructor::Tuple { arity } => {
used_constructors.iter().any(|constructor| match constructor {
Constructor::Tuple { arity: used_arity } => arity == used_arity,
_ => false,
})
}
Constructor::Bool(_) => {
if used_constructors.is_empty() {
return false;
}
let covers_true =
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(true)));
let covers_false =
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(false)));
covers_true && covers_false
}
Constructor::Enum(e) => cx.db.enum_data(e.parent).variants.iter().all(|(id, _)| {
for constructor in used_constructors {
if let Constructor::Enum(e) = constructor {
if id == e.local_id {
return true;
}
}
}
false
}),
}
}
fn enum_variant_matches(cx: &MatchCheckCtx, pat_id: PatId, enum_variant_id: EnumVariantId) -> bool {
if let Some(VariantId::EnumVariantId(pat_variant_id)) =
cx.infer.variant_resolution_for_pat(pat_id)
{
if pat_variant_id.local_id == enum_variant_id.local_id {
return true;
}
}
false
}
#[cfg(test)]
mod tests {
pub(super) use insta::assert_snapshot;
pub(super) use ra_db::fixture::WithFixture;
pub(super) use crate::test_db::TestDB;
pub(super) fn check_diagnostic_message(content: &str) -> String {
TestDB::with_single_file(content).0.diagnostics().0
}
pub(super) fn check_diagnostic_with_no_fix(content: &str) {
let diagnostic_count = TestDB::with_single_file(content).0.diagnostics().1;
assert_eq!(1, diagnostic_count, "no diagnotic reported");
}
pub(super) fn check_no_diagnostic(content: &str) {
let diagnostic_count = TestDB::with_single_file(content).0.diagnostics().1;
assert_eq!(0, diagnostic_count, "expected no diagnostic, found one");
}
#[test]
fn empty_tuple_no_arms_diagnostic_message() {
let content = r"
fn test_fn() {
match () {
}
}
";
assert_snapshot!(
check_diagnostic_message(content),
@"\"{\\n }\": Missing match arm\n"
);
}
#[test]
fn empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match () {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match () {
() => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match (()) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match (()) {
(()) => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_two_empty_tuple_no_arms() {
let content = r"
fn test_fn() {
match ((), ()) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_two_empty_tuple_no_diagnostic() {
let content = r"
fn test_fn() {
match ((), ()) {
((), ()) => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn bool_no_arms() {
let content = r"
fn test_fn() {
match false {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn bool_missing_arm() {
let content = r"
fn test_fn() {
match false {
true => {}
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn bool_no_diagnostic() {
let content = r"
fn test_fn() {
match false {
true => {}
false => {}
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_bools_no_arms() {
let content = r"
fn test_fn() {
match (false, true) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_bools_missing_arms() {
let content = r"
fn test_fn() {
match (false, true) {
(true, true) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_bools_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, true) {
(true, true) => {},
(true, false) => {},
(false, true) => {},
(false, false) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_tuple_and_bools_missing_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_tuple_and_bools_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
(true, ((), false)) => {},
(false, ((), true)) => {},
(false, ((), false)) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_tuple_and_bools_wildcard_missing_arms() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, _) => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn tuple_of_tuple_and_bools_wildcard_no_diagnostic() {
let content = r"
fn test_fn() {
match (false, ((), false)) {
(true, ((), true)) => {},
(true, ((), false)) => {},
(false, _) => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_no_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::A {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_missing_arms() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::B {
Either::A => {},
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_no_diagnostic() {
let content = r"
enum Either {
A,
B,
}
fn test_fn() {
match Either::B {
Either::A => {},
Either::B => {},
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_no_arms() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_containing_bool_missing_arms() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true) => (),
Either::B => (),
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_containing_bool_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(true) => (),
Either::A(false) => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_with_wild_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::B => (),
_ => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_containing_bool_with_wild_2_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B,
}
fn test_fn() {
match Either::B {
Either::A(_) => (),
Either::B => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn enum_different_sizes_missing_arms() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(_) => (),
Either::B(false, _) => (),
}
}
";
check_diagnostic_with_no_fix(content);
}
#[test]
fn enum_different_sizes_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(_) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn or_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
fn test_fn() {
match Either::A(false) {
Either::A(true) | Either::A(false) => (),
Either::B(true, _) => (),
Either::B(false, _) => (),
}
}
";
check_no_diagnostic(content);
}
#[test]
fn tuple_of_enum_no_diagnostic() {
let content = r"
enum Either {
A(bool),
B(bool, bool),
}
enum Either2 {
C,
D,
}
fn test_fn() {
match (Either::A(false), Either2::C) {
(Either::A(true), _) | (Either::A(false), _) => (),
(Either::B(true, _), Either2::C) => (),
(Either::B(false, _), Either2::C) => (),
(Either::B(_, _), Either2::D) => (),
}
}
";
check_no_diagnostic(content);
}
}
#[cfg(test)]
mod false_negatives {
//! The implementation of match checking here is a work in progress. As we roll this out, we
//! prefer false negatives to false positives (ideally there would be no false positives). This
//! test module should document known false negatives. Eventually we will have a complete
//! implementation of match checking and this module will be empty.
//!
//! The reasons for documenting known false negatives:
//!
//! 1. It acts as a backlog of work that can be done to improve the behavior of the system.
//! 2. It ensures the code doesn't panic when handling these cases.
use super::tests::*;
#[test]
fn mismatched_types() {
let content = r"
enum Either {
A,
B,
}
enum Either2 {
C,
D,
}
fn test_fn() {
match Either::A {
Either2::C => (),
Either2::D => (),
}
}
";
// This is a false negative.
// We don't currently check that the match arms actually
// match the type of the match expression.
check_no_diagnostic(content);
}
}