ratatui/examples/hello_world.rs

73 lines
3 KiB
Rust
Raw Normal View History

//! # [Ratatui] Hello World example
//!
//! The latest version of this example is available in the [examples] folder in the repository.
//!
//! Please note that the examples are designed to be run against the `main` branch of the Github
//! repository. This means that you may not be able to compile with the latest release version on
//! crates.io, or the one that you have installed locally.
//!
//! See the [examples readme] for more information on finding examples that match the version of the
//! library you are using.
//!
//! [Ratatui]: https://github.com/ratatui/ratatui
//! [examples]: https://github.com/ratatui/ratatui/blob/main/examples
//! [examples readme]: https://github.com/ratatui/ratatui/blob/main/examples/README.md
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
use std::time::Duration;
use color_eyre::{eyre::Context, Result};
use ratatui::{
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
crossterm::event::{self, Event, KeyCode},
widgets::Paragraph,
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
DefaultTerminal, Frame,
};
/// This is a bare minimum example. There are many approaches to running an application loop, so
/// this is not meant to be prescriptive. It is only meant to demonstrate the basic setup and
/// teardown of a terminal application.
///
/// This example does not handle events or update the application state. It just draws a greeting
/// and exits when the user presses 'q'.
fn main() -> Result<()> {
color_eyre::install()?; // augment errors / panics with easy to read messages
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
let terminal = ratatui::init();
let app_result = run(terminal).context("app loop failed");
ratatui::restore();
app_result
}
/// Run the application loop. This is where you would handle events and update the application
/// state. This example exits when the user presses 'q'. Other styles of application loops are
/// possible, for example, you could have multiple application states and switch between them based
/// on events, or you could have a single application state and update it based on events.
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
fn run(mut terminal: DefaultTerminal) -> Result<()> {
loop {
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
terminal.draw(draw)?;
if should_quit()? {
break;
}
}
Ok(())
}
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
/// Render the application. This is where you would draw the application UI. This example draws a
/// greeting.
fn draw(frame: &mut Frame) {
let greeting = Paragraph::new("Hello World! (press 'q' to quit)");
frame.render_widget(greeting, frame.area());
}
/// Check if the user has pressed 'q'. This is where you would handle events. This example just
/// checks if the user has pressed 'q' and returns true if they have. It does not handle any other
feat(terminal): Add ratatui::init() and restore() methods (#1289) These are simple opinionated methods for creating a terminal that is useful to use in most apps. The new init method creates a crossterm backend writing to stdout, enables raw mode, enters the alternate screen, and sets a panic handler that restores the terminal on panic. A minimal hello world now looks a bit like: ```rust use ratatui::{ crossterm::event::{self, Event}, text::Text, Frame, }; fn main() { let mut terminal = ratatui::init(); loop { terminal .draw(|frame: &mut Frame| frame.render_widget(Text::raw("Hello World!"), frame.area())) .expect("Failed to draw"); if matches!(event::read().expect("failed to read event"), Event::Key(_)) { break; } } ratatui::restore(); } ``` A type alias `DefaultTerminal` is added to represent this terminal type and to simplify any cases where applications need to pass this terminal around. It is equivalent to: `Terminal<CrosstermBackend<Stdout>>` We also added `ratatui::try_init()` and `try_restore()`, for situations where you might want to handle initialization errors yourself instead of letting the panic handler fire and cleanup. Simple Apps should prefer the `init` and `restore` functions over these functions. Corresponding functions to allow passing a `TerminalOptions` with a `Viewport` (e.g. inline, fixed) are also available (`init_with_options`, and `try_init_with_options`). The existing code to create a backend and terminal will remain and is not deprecated by this approach. This just provides a simple one line initialization using the common options. --------- Co-authored-by: Orhun Parmaksız <orhunparmaksiz@gmail.com>
2024-08-22 12:16:35 +00:00
/// events. There is a 250ms timeout on the event poll to ensure that the terminal is rendered at
/// least once every 250ms. This allows you to do other work in the application loop, such as
/// updating the application state, without blocking the event loop for too long.
fn should_quit() -> Result<bool> {
if event::poll(Duration::from_millis(250)).context("event poll failed")? {
if let Event::Key(key) = event::read().context("event read failed")? {
return Ok(KeyCode::Char('q') == key.code);
}
}
Ok(false)
}