phaser/src/renderer/webgl/BatchManager.js

604 lines
18 KiB
JavaScript
Raw Normal View History

/**
* @author Richard Davey <rich@photonstorm.com>
* @author Mat Groves (@Doormat23)
* @copyright 2016 Photon Storm Ltd.
* @license {@link https://github.com/photonstorm/phaser/blob/master/license.txt|MIT License}
*/
/**
* New version of PIXI.WebGLSpriteBatch
*
* @class Phaser.Renderer.Canvas
* @constructor
* @param {Phaser.Game} game - Game reference to the currently running game.
*/
Phaser.Renderer.WebGL.BatchManager = function (renderer, batchSize)
{
this.renderer = renderer;
this.gl = null;
2016-10-18 23:23:40 +00:00
// Total number of objects we'll batch before flushing and rendering
this.maxBatchSize = batchSize;
2016-10-18 23:23:40 +00:00
this.halfBatchSize = this.maxBatchSize / 2;
// Vertex Data Size is calculated by adding together:
2016-10-18 23:23:40 +00:00
//
2016-10-20 04:04:06 +00:00
// Position (vec2) = 4 * 2 = 8 bytes
// UV (vec2) = 4 * 2 = 8 bytes
// Texture Index (float) = 4 bytes
// Tint Color (float) = 4 bytes
// BG Color (float) = 4 bytes
2016-10-18 23:23:40 +00:00
2016-10-20 04:04:06 +00:00
this.vertSize = (4 * 2) + (4 * 2) + (4) + (4) + (4);
2016-10-18 23:23:40 +00:00
var numVerts = this.vertSize * this.maxBatchSize * 4;
this.vertices = new ArrayBuffer(numVerts);
// Number of total quads allowed in the batch * 6
// 6 because there are 2 triangles per quad, and each triangle has 3 indices
this.indices = new Uint16Array(this.maxBatchSize * 6);
// View on the vertices as a Float32Array
this.positions = new Float32Array(this.vertices);
// View on the vertices as a Uint32Array
this.colors = new Uint32Array(this.vertices);
this.currentBatchSize = 0;
this.dirty = true;
this.list = [];
/**
* The WebGL program.
* @property program
* @type Any
*/
this.program = null;
/**
* The Default Vertex shader source.
*
* @property defaultVertexSrc
* @type String
*/
this.vertexSrc = [
'attribute vec2 aVertexPosition;',
'attribute vec2 aTextureCoord;',
2016-10-20 04:04:06 +00:00
'attribute float aTextureIndex;',
'attribute vec4 aTintColor;',
'attribute vec4 aBgColor;',
'uniform vec2 projectionVector;',
2016-10-20 14:01:22 +00:00
'uniform vec2 offsetVector;',
'varying vec2 vTextureCoord;',
'varying vec4 vTintColor;',
'varying vec4 vBgColor;',
2016-10-20 04:04:06 +00:00
'varying float vTextureIndex;',
'const vec2 center = vec2(-1.0, 1.0);',
'void main(void) {',
2016-10-20 14:01:22 +00:00
' if (aTextureIndex > 0.0) gl_Position = vec4(0.0);',
' gl_Position = vec4(((aVertexPosition + offsetVector) / projectionVector) + center, 0.0, 1.0);',
2016-10-18 23:23:40 +00:00
' vTextureCoord = aTextureCoord;', // pass the texture coordinate to the fragment shader, the GPU will interpolate the points
' vTintColor = vec4(aTintColor.rgb * aTintColor.a, aTintColor.a);',
' vBgColor = aBgColor;',
2016-10-20 13:33:31 +00:00
' vTextureIndex = aTextureIndex;',
2016-10-18 23:23:40 +00:00
'}'
];
/**
* The fragment shader.
* @property fragmentSrc
* @type Array
*/
2016-10-18 23:23:40 +00:00
this.fragmentSrc = [
2016-10-20 13:33:31 +00:00
'precision lowp float;',
2016-10-18 23:23:40 +00:00
'varying vec2 vTextureCoord;', // the texture coords passed in from the vertex shader
'varying vec4 vTintColor;', // the color value passed in from the vertex shader (texture color + alpha + tint)
'varying vec4 vBgColor;', // the bg color value passed in from the vertex shader
'varying float vTextureIndex;',
2016-10-18 23:23:40 +00:00
'uniform sampler2D uSampler;', // our texture
2016-10-18 23:23:40 +00:00
'void main(void) {',
' vec4 pixel = texture2D(uSampler, vTextureCoord) * vTintColor;', // get the color from the texture
// ' if (pixel.a == 0.0) pixel = vBgColor;', // if texture alpha is zero, use the bg color
' gl_FragColor = pixel;',
'}'
];
this.multiTextureFragmentSrc = null;
// @type {GLint}
2016-10-20 04:04:06 +00:00
this.aVertexPosition;
// @type {GLint}
2016-10-20 04:04:06 +00:00
this.aTextureCoord;
// @type {GLint}
this.aTextureIndex;
// @type {GLint}
2016-10-20 04:04:06 +00:00
this.aTintColor;
// @type {GLint}
2016-10-20 04:04:06 +00:00
this.aBgColor;
2016-10-20 13:33:31 +00:00
// @type {WebGLUniformLocation }
this.uSampler;
// @type {WebGLUniformLocation }
this.projectionVector;
2016-10-20 14:01:22 +00:00
// @type {WebGLUniformLocation }
this.offsetVector;
2016-10-23 10:25:44 +00:00
this._i = 0;
};
2016-10-07 01:09:12 +00:00
Phaser.Renderer.WebGL.BatchManager.prototype.constructor = Phaser.Renderer.WebGL.BatchManager;
2016-10-07 01:09:12 +00:00
Phaser.Renderer.WebGL.BatchManager.prototype = {
init: function ()
{
this.gl = this.renderer.gl;
2016-10-18 23:23:40 +00:00
// Our static index buffer, calculated once at the start of our game
// This contains the indices data for the quads.
//
// A quad is made up of 2 triangles (A and B in the image below)
//
// 0 = Top Left
// 1 = Top Right
// 2 = Bottom Right
// 3 = Bottom Left
//
// 0----1
// |\ A|
// | \ |
// | \ |
// | B \|
// | \
// 3----2
//
// Because triangles A and B share 2 points (0 and 2) the vertex buffer only stores
// 4 sets of data (top-left, top-right, bottom-left and bottom-right), which is why
// the indices offsets uses the j += 4 iteration. Indices array has to contain 3
// entries for every triangle (so 6 for every quad), but our vertex data compacts
// that down, as we don't want to fill it with loads of DUPLICATE data, so the
// indices array is a look-up table, telling WebGL where in the vertex buffer to look
// for that triangles indice data.
// batchSize * vertSize = 2000 * 6 (because we store 6 pieces of vertex data per triangle)
// and up to a maximum of 2000 entries in the batch
for (var i = 0, j = 0; i < (this.maxBatchSize * this.vertSize); i += 6, j += 4)
{
// Triangle 1
this.indices[i + 0] = j + 0; // Top Left
this.indices[i + 1] = j + 1; // Top Right
this.indices[i + 2] = j + 2; // Bottom Right
// Triangle 2
this.indices[i + 3] = j + 0; // Top Left
this.indices[i + 4] = j + 2; // Bottom Right
this.indices[i + 5] = j + 3; // Bottom Left
}
var gl = this.gl;
// Create indices buffer
this.indexBuffer = gl.createBuffer();
// Bind it
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.indexBuffer);
// Set the source of the buffer data (this.indices array)
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, this.indices, gl.STATIC_DRAW);
// Create Vertex Data buffer
this.vertexBuffer = gl.createBuffer();
// Bind it
gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer);
// Set the source of the buffer data (this.vertices array)
gl.bufferData(gl.ARRAY_BUFFER, this.vertices, gl.DYNAMIC_DRAW);
if (this.renderer.multiTexture)
{
this.initMultiTexture();
}
else
{
this.initSingleTexture();
}
},
initAttributes: function ()
{
var gl = this.gl;
var program = this.program;
// Get and store the attributes
2016-10-20 13:33:31 +00:00
// vertex position
this.aVertexPosition = gl.getAttribLocation(program, 'aVertexPosition');
2016-10-20 13:33:31 +00:00
gl.enableVertexAttribArray(this.aVertexPosition);
// texture coordinate
this.aTextureCoord = gl.getAttribLocation(program, 'aTextureCoord');
2016-10-20 13:33:31 +00:00
gl.enableVertexAttribArray(this.aTextureCoord);
// texture index
2016-10-20 04:04:06 +00:00
this.aTextureIndex = gl.getAttribLocation(program, 'aTextureIndex');
2016-10-20 13:33:31 +00:00
gl.enableVertexAttribArray(this.aTextureIndex);
// tint / pixel color
this.aTintColor = gl.getAttribLocation(program, 'aTintColor');
2016-10-20 13:33:31 +00:00
gl.enableVertexAttribArray(this.aTintColor);
// background pixel color
this.aBgColor = gl.getAttribLocation(program, 'aBgColor');
2016-10-20 13:33:31 +00:00
gl.enableVertexAttribArray(this.aBgColor);
// The projection vector (middle of the game world)
this.projectionVector = gl.getUniformLocation(program, 'projectionVector');
// The offset vector (camera shake)
this.offsetVector = gl.getUniformLocation(program, 'offsetVector');
},
initSingleTexture: function ()
{
console.log('initSingleTexture');
var gl = this.gl;
// Shader already exists
if (this.program)
{
this.renderer.deleteProgram(this.program);
}
// Compile the Shader
this.program = this.renderer.compileProgram(this.vertexSrc, this.fragmentSrc);
// Set Shader
gl.useProgram(this.program);
this.initAttributes();
this.uSampler = gl.getUniformLocation(this.program, 'uSampler');
},
initMultiTexture: function ()
{
console.log('initMultiTexture');
var gl = this.gl;
var multiFrag = [
'precision lowp float;',
'varying vec2 vTextureCoord;', // the texture coords passed in from the vertex shader
'varying vec4 vTintColor;', // the color value passed in from the vertex shader (texture color + alpha + tint)
'varying vec4 vBgColor;', // the bg color value passed in from the vertex shader
'varying float vTextureIndex;',
'uniform sampler2D uSamplerArray[' + this.renderer.maxTextures + '];',
'const vec4 PINK = vec4(1.0, 0.0, 1.0, 1.0);',
'void main(void) {',
' vec4 pixel;',
' if (vTextureIndex == 0.0) pixel = texture2D(uSamplerArray[0], vTextureCoord);'
];
for (var i = 1; i < this.renderer.maxTextures; i++)
{
multiFrag.push(' else if (vTextureIndex == ' + i + '.0) pixel = texture2D(uSamplerArray[' + i + '], vTextureCoord);');
}
multiFrag = multiFrag.concat([
' else pixel = PINK;',
' pixel *= vTintColor;',
// ' if (pixel.a == 0.0) pixel = vBgColor;', // if texture alpha is zero, use the bg color
' gl_FragColor = pixel;',
'}'
]);
this.multiTextureFragmentSrc = multiFrag;
// Shader already exists
if (this.program)
{
this.renderer.deleteProgram(this.program);
}
// Compile the Shader
this.program = this.renderer.compileProgram(this.vertexSrc, this.multiTextureFragmentSrc);
// Set Shader
gl.useProgram(this.program);
this.initAttributes();
// Bind empty multi-textures to avoid WebGL spam
var indices = [];
var tempTexture = this.renderer.createEmptyTexture(1, 1, 0);
for (i = 0; i < this.renderer.maxTextures; i++)
{
gl.activeTexture(gl.TEXTURE0 + i);
gl.bindTexture(gl.TEXTURE_2D, tempTexture);
indices.push(i);
}
this.uSampler = gl.getUniformLocation(this.program, 'uSamplerArray[0]');
gl.uniform1iv(this.uSampler, indices);
},
begin: function ()
{
this._i = 0;
this.dirty = true;
this.currentBatchSize = 0;
},
end: function ()
{
if (this.currentBatchSize > 0)
{
this.flush();
}
},
start: function ()
{
this._i = 0;
this.dirty = true;
},
stop: function ()
{
if (this.currentBatchSize > 0)
{
this.flush();
}
this.dirty = true;
},
setCurrentTexture: function (source)
{
var gl = this.gl;
if (this.currentBatchSize > 0)
{
this.flush();
}
gl.activeTexture(gl.TEXTURE0 + source.glTextureIndex);
gl.bindTexture(gl.TEXTURE_2D, source.glTexture);
this.renderer.textureArray[source.glTextureIndex] = source;
},
add: function (gameObject, verts, uvs, textureIndex, alpha, tintColors, bgColors)
{
// console.log('addToBatch', gameObject.frame.name);
// Check Batch Size and flush if needed
if (this.currentBatchSize >= this.maxBatchSize)
{
this.flush();
}
var source = gameObject.frame.source;
source.glLastUsed = this.renderer.startTime;
// Does this Game Objects texture need updating?
if (source.glDirty)
{
this.renderer.updateTexture(source);
}
// Does the batch need to activate a new texture?
if (this.renderer.textureArray[source.glTextureIndex] !== source)
{
this.setCurrentTexture(source);
}
// These are TypedArray Views into the vertices ArrayBuffer
var colors = this.colors;
var positions = this.positions;
var i = this._i;
// Top Left vert (xy, uv, color)
positions[i++] = verts.x0;
positions[i++] = verts.y0;
positions[i++] = uvs.x0;
positions[i++] = uvs.y0;
positions[i++] = textureIndex;
colors[i++] = tintColors.topLeft + alpha;
colors[i++] = bgColors.topLeft;
// Top Right vert (xy, uv, color)
positions[i++] = verts.x1;
positions[i++] = verts.y1;
positions[i++] = uvs.x1;
positions[i++] = uvs.y1;
positions[i++] = textureIndex;
colors[i++] = tintColors.topRight + alpha;
colors[i++] = bgColors.topRight;
// Bottom Right vert (xy, uv, color)
positions[i++] = verts.x2;
positions[i++] = verts.y2;
positions[i++] = uvs.x2;
positions[i++] = uvs.y2;
positions[i++] = textureIndex;
colors[i++] = tintColors.bottomRight + alpha;
colors[i++] = bgColors.bottomRight;
// Bottom Left vert (xy, uv, color)
positions[i++] = verts.x3;
positions[i++] = verts.y3;
positions[i++] = uvs.x3;
positions[i++] = uvs.y3;
positions[i++] = textureIndex;
colors[i++] = tintColors.bottomLeft + alpha;
colors[i++] = bgColors.bottomLeft;
this._i = i;
this.list[this.currentBatchSize++] = gameObject;
},
initShader: function ()
{
var gl = this.gl;
// Bind the buffers
gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.indexBuffer);
// Set the projection vector. Defaults to the middle of the Game World, on negative y.
// I.e. if the world is 800x600 then the projection vector is 400 x -300
gl.uniform2f(this.projectionVector, this.renderer.projection.x, this.renderer.projection.y);
// Set the offset vector.
gl.uniform2f(this.offsetVector, this.renderer.offset.x, this.renderer.offset.y);
// The Vertex Position (x/y)
// 2 FLOATS, 2 * 4 = 8 bytes. Index pos: 0 to 7
// final argument = the offset within the vertex input
gl.vertexAttribPointer(this.aVertexPosition, 2, gl.FLOAT, false, this.vertSize, 0);
2016-10-20 14:01:22 +00:00
// The Texture Coordinate (uvx/uvy)
// 2 FLOATS, 2 * 4 = 8 bytes. Index pos: 8 to 15
gl.vertexAttribPointer(this.aTextureCoord, 2, gl.FLOAT, false, this.vertSize, 8);
// Texture Index
// 1 FLOAT, 4 bytes. Index pos: 16 to 19
gl.vertexAttribPointer(this.aTextureIndex, 1, gl.FLOAT, false, this.vertSize, 16);
// Tint color
// 4 UNSIGNED BYTES, 4 bytes. Index pos: 20 to 23
// Attributes will be interpreted as unsigned bytes and normalized
gl.vertexAttribPointer(this.aTintColor, 4, gl.UNSIGNED_BYTE, true, this.vertSize, 20);
// Background Color
// 4 UNSIGNED BYTES, 4 bytes. Index pos: 24 to 27
// Attributes will be interpreted as unsigned bytes and normalized
gl.vertexAttribPointer(this.aBgColor, 4, gl.UNSIGNED_BYTE, true, this.vertSize, 24);
this.dirty = false;
},
flush: function ()
{
// Always dirty the first pass through but subsequent calls may be clean
if (this.dirty)
{
this.initShader();
}
var gl = this.gl;
// Upload the vertex data to the GPU - is this cheaper (overall) than creating a new TypedArray view?
gl.bufferSubData(gl.ARRAY_BUFFER, 0, this.vertices);
/*
2016-10-18 23:23:40 +00:00
if (this.currentBatchSize > this.halfBatchSize)
{
gl.bufferSubData(gl.ARRAY_BUFFER, 0, this.vertices);
}
else
{
gl.bindBuffer(gl.ARRAY_BUFFER, this.vertexBuffer);
// This creates a brand new Typed Array - what's the cost of this vs. just uploading all vert data?
var view = this.positions.subarray(0, this.currentBatchSize * this.vertSize);
gl.bufferSubData(gl.ARRAY_BUFFER, 0, view);
}
*/
var sprite;
var start = 0;
var currentSize = 0;
for (var i = 0; i < this.currentBatchSize; i++)
{
sprite = this.list[i];
if (sprite.blendMode !== this.renderer.currentBlendMode)
{
if (currentSize > 0)
{
gl.drawElements(gl.TRIANGLES, currentSize * 6, gl.UNSIGNED_SHORT, start * 6 * 2);
this.renderer.drawCount++;
// Reset the batch
start = i;
currentSize = 0;
}
this.renderer.setBlendMode(sprite.blendMode);
}
// TODO: Check for shader here
// If either blend or shader set, we need to drawElements and swap
currentSize++;
}
if (currentSize > 0)
{
gl.drawElements(gl.TRIANGLES, currentSize * 6, gl.UNSIGNED_SHORT, start * 6 * 2);
this.renderer.drawCount++;
}
// Reset the batch
this.currentBatchSize = 0;
this._i = 0;
},
destroy: function ()
{
this.vertices = null;
this.indices = null;
this.gl.deleteBuffer(this.vertexBuffer);
this.gl.deleteBuffer(this.indexBuffer);
this.renderer = null;
this.gl = null;
}
};