hacktricks/macos-hardening/macos-security-and-privilege-escalation/mac-os-architecture/universal-binaries-and-mach-o-format.md

322 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Universal binaries & Mach-O Format
<details>
<summary><a href="https://cloud.hacktricks.xyz/pentesting-cloud/pentesting-cloud-methodology"><strong>☁️ HackTricks Cloud ☁️</strong></a> -<a href="https://twitter.com/hacktricks_live"><strong>🐦 Twitter 🐦</strong></a> - <a href="https://www.twitch.tv/hacktricks_live/schedule"><strong>🎙️ Twitch 🎙️</strong></a> - <a href="https://www.youtube.com/@hacktricks_LIVE"><strong>🎥 Youtube 🎥</strong></a></summary>
* Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access to the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
* Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
* Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
* **Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Share your hacking tricks by submitting PRs to the** [**hacktricks repo**](https://github.com/carlospolop/hacktricks) **and** [**hacktricks-cloud repo**](https://github.com/carlospolop/hacktricks-cloud).
</details>
## Basic Information
Mac OS binaries usually are compiled as **universal binaries**. A **universal binary** can **support multiple architectures in the same file**.
These binaries follows the **Mach-O structure** which is basically compased of:
* Header
* Load Commands
* Data
![](<../../../.gitbook/assets/image (559).png>)
## Fat Header
Search for the file with: `mdfind fat.h | grep -i mach-o | grep -E "fat.h$"`
<pre class="language-c"><code class="lang-c"><strong>#define FAT_MAGIC 0xcafebabe
</strong><strong>#define FAT_CIGAM 0xbebafeca /* NXSwapLong(FAT_MAGIC) */
</strong>
struct fat_header {
<strong> uint32_t magic; /* FAT_MAGIC or FAT_MAGIC_64 */
</strong><strong> uint32_t nfat_arch; /* number of structs that follow */
</strong>};
struct fat_arch {
cpu_type_t cputype; /* cpu specifier (int) */
cpu_subtype_t cpusubtype; /* machine specifier (int) */
uint32_t offset; /* file offset to this object file */
uint32_t size; /* size of this object file */
uint32_t align; /* alignment as a power of 2 */
};
</code></pre>
The header has the **magic** bytes followed by the **number** of **archs** the file **contains** (`nfat_arch`) and each arch will have a `fat_arch` struct.
Check it with:
<pre class="language-shell-session"><code class="lang-shell-session">% file /bin/ls
/bin/ls: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit executable x86_64] [arm64e:Mach-O 64-bit executable arm64e]
/bin/ls (for architecture x86_64): Mach-O 64-bit executable x86_64
/bin/ls (for architecture arm64e): Mach-O 64-bit executable arm64e
% otool -f -v /bin/ls
Fat headers
fat_magic FAT_MAGIC
<strong>nfat_arch 2
</strong><strong>architecture x86_64
</strong> cputype CPU_TYPE_X86_64
cpusubtype CPU_SUBTYPE_X86_64_ALL
capabilities 0x0
<strong> offset 16384
</strong><strong> size 72896
</strong> align 2^14 (16384)
<strong>architecture arm64e
</strong> cputype CPU_TYPE_ARM64
cpusubtype CPU_SUBTYPE_ARM64E
capabilities PTR_AUTH_VERSION USERSPACE 0
<strong> offset 98304
</strong><strong> size 88816
</strong> align 2^14 (16384)
</code></pre>
or using the [Mach-O View](https://sourceforge.net/projects/machoview/) tool:
<figure><img src="../../../.gitbook/assets/image (5) (1).png" alt=""><figcaption></figcaption></figure>
As you may be thinking usually a universal binary compiled for 2 architectures **doubles the size** of one compiled for just 1 arch.
## **Mach-O Header**
The header contains basic information about the file, such as magic bytes to identify it as a Mach-O file and information about the target architecture. You can find it in: `mdfind loader.h | grep -i mach-o | grep -E "loader.h$"`
```c
#define MH_MAGIC 0xfeedface /* the mach magic number */
#define MH_CIGAM 0xcefaedfe /* NXSwapInt(MH_MAGIC) */
struct mach_header {
uint32_t magic; /* mach magic number identifier */
cpu_type_t cputype; /* cpu specifier (e.g. I386) */
cpu_subtype_t cpusubtype; /* machine specifier */
uint32_t filetype; /* type of file (usage and alignment for the file) */
uint32_t ncmds; /* number of load commands */
uint32_t sizeofcmds; /* the size of all the load commands */
uint32_t flags; /* flags */
};
#define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
#define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
struct mach_header_64 {
uint32_t magic; /* mach magic number identifier */
int32_t cputype; /* cpu specifier */
int32_t cpusubtype; /* machine specifier */
uint32_t filetype; /* type of file */
uint32_t ncmds; /* number of load commands */
uint32_t sizeofcmds; /* the size of all the load commands */
uint32_t flags; /* flags */
uint32_t reserved; /* reserved */
};
```
**Filetypes**:
* MH\_EXECUTE (0x2): Standard Mach-O executable
* MH\_DYLIB (0x6): A Mach-O dynamic linked library (i.e. .dylib)
* MH\_BUNDLE (0x8): A Mach-O bundle (i.e. .bundle)
```bash
# Checking the mac header of a binary
otool -arch arm64e -hv /bin/ls
Mach header
magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64 ARM64 E USR00 EXECUTE 19 1728 NOUNDEFS DYLDLINK TWOLEVEL PIE
```
Or using [Mach-O View](https://sourceforge.net/projects/machoview/):
<figure><img src="../../../.gitbook/assets/image (4) (1) (4).png" alt=""><figcaption></figcaption></figure>
## **Mach-O Load commands**
This specifies the **layout of the file in memory**. It contains the **location of the symbol table**, the main thread context at the beginning of execution, and which **shared libraries** are required.\
The commands basically instruct the dynamic loader **(dyld) how to load the binary in memory.**
Load commands all begin with a **load\_command** structure, defined in the previously mentioned **`loader.h`**:
```objectivec
struct load_command {
uint32_t cmd; /* type of load command */
uint32_t cmdsize; /* total size of command in bytes */
};
```
There are about **50 different types of load commands** that the system handles differently. The most common ones are: `LC_SEGMENT_64`, `LC_LOAD_DYLINKER`, `LC_MAIN`, `LC_LOAD_DYLIB`, and `LC_CODE_SIGNATURE`.
### **LC\_SEGMENT/LC\_SEGMENT\_64**
{% hint style="success" %}
Basically, this type of Load Command define **how to load the sections** that are stored in DATA when the binary is executed.
{% endhint %}
These commands **define segments** that are **mapped** into the **virtual memory space** of a process when it is executed.
There are **different types** of segments, such as the **\_\_TEXT** segment, which holds the executable code of a program, and the **\_\_DATA** segment, which contains data used by the process. These **segments are located in the data section** of the Mach-O file.
**Each segment** can be further **divided** into multiple **sections**. The **load command structure** contains **information** about **these sections** within the respective segment.
In the header first you find the **segment header**:
<pre class="language-c"><code class="lang-c">struct segment_command_64 { /* for 64-bit architectures */
uint32_t cmd; /* LC_SEGMENT_64 */
uint32_t cmdsize; /* includes sizeof section_64 structs */
char segname[16]; /* segment name */
uint64_t vmaddr; /* memory address of this segment */
uint64_t vmsize; /* memory size of this segment */
uint64_t fileoff; /* file offset of this segment */
uint64_t filesize; /* amount to map from the file */
int32_t maxprot; /* maximum VM protection */
int32_t initprot; /* initial VM protection */
<strong> uint32_t nsects; /* number of sections in segment */
</strong> uint32_t flags; /* flags */
};
</code></pre>
Example of segment header:
<figure><img src="../../../.gitbook/assets/image (2).png" alt=""><figcaption></figcaption></figure>
This header defines the **number of sections whose headers appear after** it:
```c
struct section_64 { /* for 64-bit architectures */
char sectname[16]; /* name of this section */
char segname[16]; /* segment this section goes in */
uint64_t addr; /* memory address of this section */
uint64_t size; /* size in bytes of this section */
uint32_t offset; /* file offset of this section */
uint32_t align; /* section alignment (power of 2) */
uint32_t reloff; /* file offset of relocation entries */
uint32_t nreloc; /* number of relocation entries */
uint32_t flags; /* flags (section type and attributes)*/
uint32_t reserved1; /* reserved (for offset or index) */
uint32_t reserved2; /* reserved (for count or sizeof) */
uint32_t reserved3; /* reserved */
};
```
Example of **section header**:
<figure><img src="../../../.gitbook/assets/image (6).png" alt=""><figcaption></figcaption></figure>
If you **add** the **section offset** (0x37DC) + the **offset** where the **arch starts**, in this case `0x18000` --> `0x37DC + 0x18000 = 0x1B7DC`
<figure><img src="../../../.gitbook/assets/image (3) (1).png" alt=""><figcaption></figcaption></figure>
It's also possible to get **headers information** from the **command line** with:
```bash
otool -lv /bin/ls
```
Common segments loaded by this cmd:
* **`__PAGEZERO`:** It instructs the kernel to **map** the **address zero** so it **cannot be read from, written to, or executed**. The maxprot and minprot variables in the structure are set to zero to indicate there are **no read-write-execute rights on this page**.&#x20;
* This allocation is important to **mitigate NULL pointer dereference vulnerabilities**.
* **`__TEXT`**: Contains **executable** **code** and **data** that is **read-only.** Common sections of this segment:
* `__text`: Compiled binary code
* `__const`: Constant data
* `__cstring`: String constants
* `__stubs` and `__stubs_helper`: Involved during the dynamic library loading process
* **`__DATA`**: Contains data that is **writable.**
* `__data`: Global variables (that have been initialized)
* `__bss`: Static variables (that have not been initialized)
* `__objc_*` (\_\_objc\_classlist, \_\_objc\_protolist, etc): Information used by the Objective-C runtime
* **`__LINKEDIT`**: Contains information for the linker (dyld) such as, "symbol, string, and relocation table entries."
* **`__OBJC`**: Contains information used by the Objective-C runtime. Though this information might also be found in the \_\_DATA segment, within various in \_\_objc\_\* sections.
### **`LC_MAIN`**
Contains the entrypoint in the **entryoff attribute.** At load time, **dyld** simply **adds** this value to the (in-memory) **base of the binary**, then **jumps** to this instruction to start execution of the binarys code.
### **LC\_CODE\_SIGNATURE**
Contains information about the **code signature of the Macho-O file**. It only contains an **offset** that **points** to the **signature blob**. This is typically at the very end of the file.
### **LC\_LOAD\_DYLINKER**
Contains the **path to the dynamic linker executable** that maps shared libraries into the process address space. The **value is always set to `/usr/lib/dyld`**. Its important to note that in macOS, dylib mapping happens in **user mode**, not in kernel mode.
### **`LC_LOAD_DYLIB`**
This load command describes a **dynamic** **library** dependency which **instructs** the **loader** (dyld) to **load and link said library**. There is a LC\_LOAD\_DYLIB load command **for each library** that the Mach-O binary requires.
* This load command is a structure of type **`dylib_command`** (which contains a struct dylib, describing the actual dependent dynamic library):
```objectivec
struct dylib_command {
uint32_t cmd; /* LC_LOAD_{,WEAK_}DYLIB */
uint32_t cmdsize; /* includes pathname string */
struct dylib dylib; /* the library identification */
};
struct dylib {
union lc_str name; /* library's path name */
uint32_t timestamp; /* library's build time stamp */
uint32_t current_version; /* library's current version number */
uint32_t compatibility_version; /* library's compatibility vers number*/
};
```
![](<../../../.gitbook/assets/image (558).png>)
You could also get this info from the cli with:
```bash
otool -L /bin/ls
/bin/ls:
/usr/lib/libutil.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libncurses.5.4.dylib (compatibility version 5.4.0, current version 5.4.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1319.0.0)
```
Some potential malware related libraries are:
* **DiskArbitration**: Monitoring USB drives
* **AVFoundation:** Capture audio and video
* **CoreWLAN**: Wifi scans.
{% hint style="info" %}
A Mach-O binary can contain one or **more** **constructors**, that will be **executed** **before** the address specified in **LC\_MAIN**.\
The offsets of any constructors are held in the **\_\_mod\_init\_func** section of the **\_\_DATA\_CONST** segment.
{% endhint %}
## **Mach-O Data**
The heart of the file is the final region, the data, which consists of a number of segments as laid out in the load-commands region. **Each segment can contain a number of data sections**. Each of these sections **contains code or data** of one particular type.
{% hint style="success" %}
The data is basically the part containing all the information loaded by the load commands LC\_SEGMENTS\_64
{% endhint %}
![](<../../../.gitbook/assets/image (507) (3).png>)
This includes:&#x20;
* **Function table:** Which holds information about the program functions.
* **Symbol table**: Which contains information about the external function used by the binary
* It could also contain internal function, variable names as well and more.
To check it you could use the [**Mach-O View**](https://sourceforge.net/projects/machoview/) tool:
<figure><img src="../../../.gitbook/assets/image (2) (1).png" alt=""><figcaption></figcaption></figure>
Or from the cli:
```bash
size -m /bin/ls
```
<details>
<summary><a href="https://cloud.hacktricks.xyz/pentesting-cloud/pentesting-cloud-methodology"><strong>☁️ HackTricks Cloud ☁️</strong></a> -<a href="https://twitter.com/hacktricks_live"><strong>🐦 Twitter 🐦</strong></a> - <a href="https://www.twitch.tv/hacktricks_live/schedule"><strong>🎙️ Twitch 🎙️</strong></a> - <a href="https://www.youtube.com/@hacktricks_LIVE"><strong>🎥 Youtube 🎥</strong></a></summary>
* Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access to the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
* Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
* Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
* **Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Share your hacking tricks by submitting PRs to the** [**hacktricks repo**](https://github.com/carlospolop/hacktricks) **and** [**hacktricks-cloud repo**](https://github.com/carlospolop/hacktricks-cloud).
</details>