hacktricks/macos-hardening/macos-security-and-privilege-escalation/macos-proces-abuse/macos-ipc-inter-process-communication/macos-mig-mach-interface-generator.md

401 lines
15 KiB
Markdown

# macOS MIG - Mach Interface Generator
<details>
<summary><strong>Apprenez le piratage AWS de zéro à héros avec</strong> <a href="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (Expert de l'équipe rouge HackTricks AWS)</strong></a><strong>!</strong></summary>
Autres façons de soutenir HackTricks :
- Si vous souhaitez voir votre **entreprise annoncée dans HackTricks** ou **télécharger HackTricks en PDF**, consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
- Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com)
- Découvrez [**La famille PEASS**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFT**](https://opensea.io/collection/the-peass-family)
- **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez-nous** sur **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
- **Partagez vos astuces de piratage en soumettant des PR aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) dépôts GitHub.
</details>
MIG a été créé pour **simplifier le processus de création de code Mach IPC**. Il génère essentiellement le code nécessaire pour que le serveur et le client communiquent avec une définition donnée. Même si le code généré est moche, un développeur n'aura qu'à l'importer et son code sera beaucoup plus simple qu'auparavant.
### Exemple
Créez un fichier de définition, dans ce cas avec une fonction très simple :
{% code title="myipc.defs" %}
```cpp
subsystem myipc 500; // Arbitrary name and id
userprefix USERPREF; // Prefix for created functions in the client
serverprefix SERVERPREF; // Prefix for created functions in the server
#include <mach/mach_types.defs>
#include <mach/std_types.defs>
simpleroutine Subtract(
server_port : mach_port_t;
n1 : uint32_t;
n2 : uint32_t);
```
{% endcode %}
Maintenant, utilisez mig pour générer le code serveur et client qui pourra communiquer entre eux pour appeler la fonction Subtract :
```bash
mig -header myipcUser.h -sheader myipcServer.h myipc.defs
```
Plusieurs nouveaux fichiers seront créés dans le répertoire actuel.
Dans les fichiers **`myipcServer.c`** et **`myipcServer.h`**, vous pouvez trouver la déclaration et la définition de la structure **`SERVERPREFmyipc_subsystem`**, qui définit essentiellement la fonction à appeler en fonction de l'ID du message reçu (nous avons indiqué un numéro de départ de 500) :
```c
/* Description of this subsystem, for use in direct RPC */
const struct SERVERPREFmyipc_subsystem SERVERPREFmyipc_subsystem = {
myipc_server_routine,
500, // start ID
501, // end ID
(mach_msg_size_t)sizeof(union __ReplyUnion__SERVERPREFmyipc_subsystem),
(vm_address_t)0,
{
{ (mig_impl_routine_t) 0,
// Function to call
(mig_stub_routine_t) _XSubtract, 3, 0, (routine_arg_descriptor_t)0, (mach_msg_size_t)sizeof(__Reply__Subtract_t)},
}
};
```
{% endtab %}
{% tab title="myipcServer.h" %}
### macOS MIG (Mach Interface Generator)
Le générateur d'interface Mach (MIG) est un outil fourni par Apple pour simplifier la communication entre les processus sur macOS. Il génère des interfaces de programmation pour les services système qui utilisent le Mach IPC (Inter-Process Communication).
Voici un exemple de fichier d'en-tête pour un serveur MIG personnalisé :
```c
#include <mach/mach.h>
#include <servers/bootstrap.h>
kern_return_t my_server(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP);
```
Dans cet exemple, `my_server` est la fonction qui sera appelée pour traiter les messages reçus par le serveur MIG personnalisé.
L'utilisation de MIG peut introduire des vulnérabilités de sécurité si les entrées ne sont pas correctement validées, ce qui peut être exploité pour des attaques de privilège d'escalade. Il est essentiel de sécuriser correctement les services utilisant MIG pour éviter les abus de processus sur macOS.
{% endtab %}
```c
/* Description of this subsystem, for use in direct RPC */
extern const struct SERVERPREFmyipc_subsystem {
mig_server_routine_t server; /* Server routine */
mach_msg_id_t start; /* Min routine number */
mach_msg_id_t end; /* Max routine number + 1 */
unsigned int maxsize; /* Max msg size */
vm_address_t reserved; /* Reserved */
struct routine_descriptor /* Array of routine descriptors */
routine[1];
} SERVERPREFmyipc_subsystem;
```
{% endtab %}
{% endtabs %}
En fonction de la structure précédente, la fonction **`myipc_server_routine`** recevra l'**ID du message** et renverra la fonction appropriée à appeler :
```c
mig_external mig_routine_t myipc_server_routine
(mach_msg_header_t *InHeadP)
{
int msgh_id;
msgh_id = InHeadP->msgh_id - 500;
if ((msgh_id > 0) || (msgh_id < 0))
return 0;
return SERVERPREFmyipc_subsystem.routine[msgh_id].stub_routine;
}
```
Dans cet exemple, nous n'avons défini qu'une seule fonction dans les définitions, mais si nous avions défini plus de fonctions, elles auraient été à l'intérieur du tableau de **`SERVERPREFmyipc_subsystem`** et la première aurait été assignée à l'ID **500**, la deuxième à l'ID **501**...
En fait, il est possible d'identifier cette relation dans la structure **`subsystem_to_name_map_myipc`** de **`myipcServer.h`**:
```c
#ifndef subsystem_to_name_map_myipc
#define subsystem_to_name_map_myipc \
{ "Subtract", 500 }
#endif
```
Enfin, une autre fonction importante pour faire fonctionner le serveur sera **`myipc_server`**, qui est celle qui va effectivement **appeler la fonction** liée à l'identifiant reçu :
<pre class="language-c"><code class="lang-c">mig_external boolean_t myipc_server
(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP)
{
/*
* typedef struct {
* mach_msg_header_t Head;
* NDR_record_t NDR;
* kern_return_t RetCode;
* } mig_reply_error_t;
*/
mig_routine_t routine;
OutHeadP->msgh_bits = MACH_MSGH_BITS(MACH_MSGH_BITS_REPLY(InHeadP->msgh_bits), 0);
OutHeadP->msgh_remote_port = InHeadP->msgh_reply_port;
/* Taille minimale : routine() la mettra à jour si elle est différente */
OutHeadP->msgh_size = (mach_msg_size_t)sizeof(mig_reply_error_t);
OutHeadP->msgh_local_port = MACH_PORT_NULL;
OutHeadP->msgh_id = InHeadP->msgh_id + 100;
OutHeadP->msgh_reserved = 0;
if ((InHeadP->msgh_id > 500) || (InHeadP->msgh_id &#x3C; 500) ||
<strong> ((routine = SERVERPREFmyipc_subsystem.routine[InHeadP->msgh_id - 500].stub_routine) == 0)) {
</strong> ((mig_reply_error_t *)OutHeadP)->NDR = NDR_record;
((mig_reply_error_t *)OutHeadP)->RetCode = MIG_BAD_ID;
return FALSE;
}
<strong> (*routine) (InHeadP, OutHeadP);
</strong> return TRUE;
}
</code></pre>
Vérifiez les lignes précédemment mises en évidence en accédant à la fonction à appeler par ID.
Voici le code pour créer un **serveur** et un **client** simples où le client peut appeler les fonctions Subtract du serveur :
{% tabs %}
{% tab title="myipc_server.c" %}
```c
// gcc myipc_server.c myipcServer.c -o myipc_server
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
#include "myipcServer.h"
kern_return_t SERVERPREFSubtract(mach_port_t server_port, uint32_t n1, uint32_t n2)
{
printf("Received: %d - %d = %d\n", n1, n2, n1 - n2);
return KERN_SUCCESS;
}
int main() {
mach_port_t port;
kern_return_t kr;
// Register the mach service
kr = bootstrap_check_in(bootstrap_port, "xyz.hacktricks.mig", &port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_check_in() failed with code 0x%x\n", kr);
return 1;
}
// myipc_server is the function that handles incoming messages (check previous exlpanation)
mach_msg_server(myipc_server, sizeof(union __RequestUnion__SERVERPREFmyipc_subsystem), port, MACH_MSG_TIMEOUT_NONE);
}
```
{% endtab %}
{% tab title="myipc_client.c" %}
```c
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
#include "myipc.h"
int main() {
mach_port_t bootstrap_port;
kern_return_t kr = task_get_bootstrap_port(mach_task_self(), &bootstrap_port);
if (kr != KERN_SUCCESS) {
printf("Failed to get bootstrap port\n");
return 1;
}
myipc_args_t args = {0};
args.x = 10;
args.y = 20;
kr = myipc_call(bootstrap_port, &args);
if (kr != KERN_SUCCESS) {
printf("Failed to call myipc\n");
return json_object();
}
printf("Result: %d\n", args.result);
return 0;
}
```
{% endtab %}
```c
// gcc myipc_client.c myipcUser.c -o myipc_client
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
#include "myipcUser.h"
int main() {
// Lookup the receiver port using the bootstrap server.
mach_port_t port;
kern_return_t kr = bootstrap_look_up(bootstrap_port, "xyz.hacktricks.mig", &port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_look_up() failed with code 0x%x\n", kr);
return 1;
}
printf("Port right name %d\n", port);
USERPREFSubtract(port, 40, 2);
}
```
### Analyse Binaire
Comme de nombreux binaires utilisent désormais MIG pour exposer des ports mach, il est intéressant de savoir comment **identifier que MIG a été utilisé** et les **fonctions que MIG exécute** avec chaque identifiant de message.
[**jtool2**](../../macos-apps-inspecting-debugging-and-fuzzing/#jtool2) peut analyser les informations MIG d'un binaire Mach-O indiquant l'identifiant de message et identifiant la fonction à exécuter:
```bash
jtool2 -d __DATA.__const myipc_server | grep MIG
```
Il a été mentionné précédemment que la fonction qui se chargera **d'appeler la fonction correcte en fonction de l'ID du message reçu** était `myipc_server`. Cependant, vous n'aurez généralement pas les symboles du binaire (pas de noms de fonctions), il est donc intéressant de **vérifier à quoi cela ressemble décompilé** car cela sera toujours très similaire (le code de cette fonction est indépendant des fonctions exposées) :
{% tabs %}
{% tab title="myipc_server décompilé 1" %}
<pre class="language-c"><code class="lang-c">int _myipc_server(int arg0, int arg1) {
var_10 = arg0;
var_18 = arg1;
// Instructions initiales pour trouver les bons pointeurs de fonction
*(int32_t *)var_18 = *(int32_t *)var_10 &#x26; 0x1f;
*(int32_t *)(var_18 + 0x8) = *(int32_t *)(var_10 + 0x8);
*(int32_t *)(var_18 + 0x4) = 0x24;
*(int32_t *)(var_18 + 0xc) = 0x0;
*(int32_t *)(var_18 + 0x14) = *(int32_t *)(var_10 + 0x14) + 0x64;
*(int32_t *)(var_18 + 0x10) = 0x0;
if (*(int32_t *)(var_10 + 0x14) &#x3C;= 0x1f4 &#x26;&#x26; *(int32_t *)(var_10 + 0x14) >= 0x1f4) {
rax = *(int32_t *)(var_10 + 0x14);
// Appel à sign_extend_64 qui peut aider à identifier cette fonction
// Cela stocke dans rax le pointeur de l'appel qui doit être effectué
// Vérifiez l'utilisation de l'adresse 0x100004040 (tableau d'adresses de fonctions)
// 0x1f4 = 500 (l'ID de départ)
<strong> rax = *(sign_extend_64(rax - 0x1f4) * 0x28 + 0x100004040);
</strong> var_20 = rax;
// If - else, le if retourne false, tandis que le else appelle la bonne fonction et retourne true
<strong> if (rax == 0x0) {
</strong> *(var_18 + 0x18) = **_NDR_record;
*(int32_t *)(var_18 + 0x20) = 0xfffffffffffffed1;
var_4 = 0x0;
}
else {
// Adresse calculée qui appelle la bonne fonction avec 2 arguments
<strong> (var_20)(var_10, var_18);
</strong> var_4 = 0x1;
}
}
else {
*(var_18 + 0x18) = **_NDR_record;
*(int32_t *)(var_18 + 0x20) = 0xfffffffffffffed1;
var_4 = 0x0;
}
rax = var_4;
return rax;
}
</code></pre>
{% endtab %}
{% tab title="myipc_server décompilé 2" %}
C'est la même fonction décompilée dans une version Hopper gratuite différente :
<pre class="language-c"><code class="lang-c">int _myipc_server(int arg0, int arg1) {
r31 = r31 - 0x40;
saved_fp = r29;
stack[-8] = r30;
var_10 = arg0;
var_18 = arg1;
// Instructions initiales pour trouver les bons pointeurs de fonction
*(int32_t *)var_18 = *(int32_t *)var_10 &#x26; 0x1f | 0x0;
*(int32_t *)(var_18 + 0x8) = *(int32_t *)(var_10 + 0x8);
*(int32_t *)(var_18 + 0x4) = 0x24;
*(int32_t *)(var_18 + 0xc) = 0x0;
*(int32_t *)(var_18 + 0x14) = *(int32_t *)(var_10 + 0x14) + 0x64;
*(int32_t *)(var_18 + 0x10) = 0x0;
r8 = *(int32_t *)(var_10 + 0x14);
r8 = r8 - 0x1f4;
if (r8 > 0x0) {
if (CPU_FLAGS &#x26; G) {
r8 = 0x1;
}
}
if ((r8 &#x26; 0x1) == 0x0) {
r8 = *(int32_t *)(var_10 + 0x14);
r8 = r8 - 0x1f4;
if (r8 &#x3C; 0x0) {
if (CPU_FLAGS &#x26; L) {
r8 = 0x1;
}
}
if ((r8 &#x26; 0x1) == 0x0) {
r8 = *(int32_t *)(var_10 + 0x14);
// 0x1f4 = 500 (l'ID de départ)
<strong> r8 = r8 - 0x1f4;
</strong> asm { smaddl x8, w8, w9, x10 };
r8 = *(r8 + 0x8);
var_20 = r8;
r8 = r8 - 0x0;
if (r8 != 0x0) {
if (CPU_FLAGS &#x26; NE) {
r8 = 0x1;
}
}
// Même if else que dans la version précédente
// Vérifiez l'utilisation de l'adresse 0x100004040 (tableau d'adresses de fonctions)
<strong> if ((r8 &#x26; 0x1) == 0x0) {
</strong><strong> *(var_18 + 0x18) = **0x100004000;
</strong> *(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
else {
// Appel à l'adresse calculée où la fonction devrait être
<strong> (var_20)(var_10, var_18);
</strong> var_4 = 0x1;
}
}
else {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
}
else {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
r0 = var_4;
return r0;
}
</code></pre>
{% endtab %}
{% endtabs %}
En fait, si vous allez à la fonction **`0x100004000`**, vous trouverez le tableau des structures **`routine_descriptor`**. Le premier élément de la structure est l'**adresse** où la **fonction** est implémentée, et la **structure prend 0x28 octets**, donc tous les 0x28 octets (à partir de l'octet 0) vous pouvez obtenir 8 octets et ce sera l'**adresse de la fonction** qui sera appelée :
<figure><img src="../../../../.gitbook/assets/image (1) (1) (1) (1) (1) (1) (1) (1) (1) (1).png" alt=""><figcaption></figcaption></figure>
<figure><img src="../../../../.gitbook/assets/image (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1).png" alt=""><figcaption></figcaption></figure>
Ces données peuvent être extraites [**en utilisant ce script Hopper**](https://github.com/knightsc/hopper/blob/master/scripts/MIG%20Detect.py).
<details>
<summary><strong>Apprenez le piratage AWS de zéro à héros avec</strong> <a href="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
Autres façons de soutenir HackTricks :
* Si vous souhaitez voir votre **entreprise annoncée dans HackTricks** ou **télécharger HackTricks en PDF**, consultez les [**PLANS D'ABONNEMENT**](https://github.com/sponsors/carlospolop) !
* Obtenez le [**swag officiel PEASS & HackTricks**](https://peass.creator-spring.com)
* Découvrez [**The PEASS Family**](https://opensea.io/collection/the-peass-family), notre collection exclusive de [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Rejoignez le** 💬 [**groupe Discord**](https://discord.gg/hRep4RUj7f) ou le [**groupe Telegram**](https://t.me/peass) ou **suivez-nous** sur **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Partagez vos astuces de piratage en soumettant des PR aux** [**HackTricks**](https://github.com/carlospolop/hacktricks) et [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
</details>