hacktricks/reversing/reversing-tools-basic-methods/satisfiability-modulo-theories-smt-z3.md

202 lines
7.3 KiB
Markdown

{% hint style="success" %}
Learn & practice AWS Hacking:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
Learn & practice GCP Hacking: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Support HackTricks</summary>
* Check the [**subscription plans**](https://github.com/sponsors/carlospolop)!
* **Join the** 💬 [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** us on **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Share hacking tricks by submitting PRs to the** [**HackTricks**](https://github.com/carlospolop/hacktricks) and [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) github repos.
</details>
{% endhint %}
Básicamente, esta herramienta nos ayudará a encontrar valores para variables que necesitan satisfacer algunas condiciones y calcularlos a mano sería muy molesto. Por lo tanto, puedes indicar a Z3 las condiciones que las variables deben satisfacer y encontrará algunos valores (si es posible).
**Algunos textos y ejemplos son extraídos de [https://ericpony.github.io/z3py-tutorial/guide-examples.htm](https://ericpony.github.io/z3py-tutorial/guide-examples.htm)**
# Operaciones Básicas
## Booleanos/Y/O/No
```python
#pip3 install z3-solver
from z3 import *
s = Solver() #The solver will be given the conditions
x = Bool("x") #Declare the symbos x, y and z
y = Bool("y")
z = Bool("z")
# (x or y or !z) and y
s.add(And(Or(x,y,Not(z)),y))
s.check() #If response is "sat" then the model is satifable, if "unsat" something is wrong
print(s.model()) #Print valid values to satisfy the model
```
## Ints/Simplify/Reals
```python
from z3 import *
x = Int('x')
y = Int('y')
#Simplify a "complex" ecuation
print(simplify(And(x + 1 >= 3, x**2 + x**2 + y**2 + 2 >= 5)))
#And(x >= 2, 2*x**2 + y**2 >= 3)
#Note that Z3 is capable to treat irrational numbers (An irrational algebraic number is a root of a polynomial with integer coefficients. Internally, Z3 represents all these numbers precisely.)
#so you can get the decimals you need from the solution
r1 = Real('r1')
r2 = Real('r2')
#Solve the ecuation
print(solve(r1**2 + r2**2 == 3, r1**3 == 2))
#Solve the ecuation with 30 decimals
set_option(precision=30)
print(solve(r1**2 + r2**2 == 3, r1**3 == 2))
```
## Imprimir Modelo
```python
from z3 import *
x, y, z = Reals('x y z')
s = Solver()
s.add(x > 1, y > 1, x + y > 3, z - x < 10)
s.check()
m = s.model()
print ("x = %s" % m[x])
for d in m.decls():
print("%s = %s" % (d.name(), m[d]))
```
# Aritmética de Máquina
Las CPU modernas y los lenguajes de programación más utilizados emplean aritmética sobre **vectores de bits de tamaño fijo**. La aritmética de máquina está disponible en Z3Py como **Vectores de Bits**.
```python
from z3 import *
x = BitVec('x', 16) #Bit vector variable "x" of length 16 bit
y = BitVec('y', 16)
e = BitVecVal(10, 16) #Bit vector with value 10 of length 16bits
a = BitVecVal(-1, 16)
b = BitVecVal(65535, 16)
print(simplify(a == b)) #This is True!
a = BitVecVal(-1, 32)
b = BitVecVal(65535, 32)
print(simplify(a == b)) #This is False
```
## Números Firmados/Sin Firmar
Z3 proporciona versiones especiales firmadas de operaciones aritméticas donde hace una diferencia si el **vector de bits se trata como firmado o sin firmar**. En Z3Py, los operadores **<, <=, >, >=, /, % y >>** corresponden a las versiones **firmadas**. Los operadores **sin firmar** correspondientes son **ULT, ULE, UGT, UGE, UDiv, URem y LShR.**
```python
from z3 import *
# Create to bit-vectors of size 32
x, y = BitVecs('x y', 32)
solve(x + y == 2, x > 0, y > 0)
# Bit-wise operators
# & bit-wise and
# | bit-wise or
# ~ bit-wise not
solve(x & y == ~y)
solve(x < 0)
# using unsigned version of <
solve(ULT(x, 0))
```
## Functions
**Funciones interpretadas** como la aritmética donde la **función +** tiene una **interpretación estándar fija** (suma dos números). **Funciones no interpretadas** y constantes son **máximamente flexibles**; permiten **cualquier interpretación** que sea **consistente** con las **restricciones** sobre la función o constante.
Ejemplo: f aplicada dos veces a x resulta en x nuevamente, pero f aplicada una vez a x es diferente de x.
```python
from z3 import *
x = Int('x')
y = Int('y')
f = Function('f', IntSort(), IntSort())
s = Solver()
s.add(f(f(x)) == x, f(x) == y, x != y)
s.check()
m = s.model()
print("f(f(x)) =", m.evaluate(f(f(x))))
print("f(x) =", m.evaluate(f(x)))
print(m.evaluate(f(2)))
s.add(f(x) == 4) #Find the value that generates 4 as response
s.check()
print(m.model())
```
# Ejemplos
## Solucionador de Sudoku
```python
# 9x9 matrix of integer variables
X = [ [ Int("x_%s_%s" % (i+1, j+1)) for j in range(9) ]
for i in range(9) ]
# each cell contains a value in {1, ..., 9}
cells_c = [ And(1 <= X[i][j], X[i][j] <= 9)
for i in range(9) for j in range(9) ]
# each row contains a digit at most once
rows_c = [ Distinct(X[i]) for i in range(9) ]
# each column contains a digit at most once
cols_c = [ Distinct([ X[i][j] for i in range(9) ])
for j in range(9) ]
# each 3x3 square contains a digit at most once
sq_c = [ Distinct([ X[3*i0 + i][3*j0 + j]
for i in range(3) for j in range(3) ])
for i0 in range(3) for j0 in range(3) ]
sudoku_c = cells_c + rows_c + cols_c + sq_c
# sudoku instance, we use '0' for empty cells
instance = ((0,0,0,0,9,4,0,3,0),
(0,0,0,5,1,0,0,0,7),
(0,8,9,0,0,0,0,4,0),
(0,0,0,0,0,0,2,0,8),
(0,6,0,2,0,1,0,5,0),
(1,0,2,0,0,0,0,0,0),
(0,7,0,0,0,0,5,2,0),
(9,0,0,0,6,5,0,0,0),
(0,4,0,9,7,0,0,0,0))
instance_c = [ If(instance[i][j] == 0,
True,
X[i][j] == instance[i][j])
for i in range(9) for j in range(9) ]
s = Solver()
s.add(sudoku_c + instance_c)
if s.check() == sat:
m = s.model()
r = [ [ m.evaluate(X[i][j]) for j in range(9) ]
for i in range(9) ]
print_matrix(r)
else:
print "failed to solve"
```
## Referencias
* [https://ericpony.github.io/z3py-tutorial/guide-examples.htm](https://ericpony.github.io/z3py-tutorial/guide-examples.htm)
{% hint style="success" %}
Aprende y practica Hacking en AWS:<img src="/.gitbook/assets/arte.png" alt="" data-size="line">[**HackTricks Training AWS Red Team Expert (ARTE)**](https://training.hacktricks.xyz/courses/arte)<img src="/.gitbook/assets/arte.png" alt="" data-size="line">\
Aprende y practica Hacking en GCP: <img src="/.gitbook/assets/grte.png" alt="" data-size="line">[**HackTricks Training GCP Red Team Expert (GRTE)**<img src="/.gitbook/assets/grte.png" alt="" data-size="line">](https://training.hacktricks.xyz/courses/grte)
<details>
<summary>Apoya a HackTricks</summary>
* Revisa los [**planes de suscripción**](https://github.com/sponsors/carlospolop)!
* **Únete al** 💬 [**grupo de Discord**](https://discord.gg/hRep4RUj7f) o al [**grupo de telegram**](https://t.me/peass) o **síguenos** en **Twitter** 🐦 [**@hacktricks\_live**](https://twitter.com/hacktricks\_live)**.**
* **Comparte trucos de hacking enviando PRs a los** [**HackTricks**](https://github.com/carlospolop/hacktricks) y [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repos de github.
</details>
{% endhint %}