7.1 KiB
Double Free
{% hint style="success" %}
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
Basic Information
Se você liberar um bloco de memória mais de uma vez, isso pode bagunçar os dados do alocador e abrir a porta para ataques. Veja como isso acontece: quando você libera um bloco de memória, ele volta para uma lista de blocos livres (por exemplo, o "fast bin"). Se você liberar o mesmo bloco duas vezes seguidas, o alocador detecta isso e gera um erro. Mas se você liberar outro bloco no meio, a verificação de double-free é contornada, causando corrupção.
Agora, quando você pede nova memória (usando malloc
), o alocador pode lhe dar um bloco que foi liberado duas vezes. Isso pode levar a dois ponteiros diferentes apontando para o mesmo local de memória. Se um atacante controla um desses ponteiros, ele pode alterar o conteúdo dessa memória, o que pode causar problemas de segurança ou até mesmo permitir que ele execute código.
Example:
#include <stdio.h>
#include <stdlib.h>
int main() {
// Allocate memory for three chunks
char *a = (char *)malloc(10);
char *b = (char *)malloc(10);
char *c = (char *)malloc(10);
char *d = (char *)malloc(10);
char *e = (char *)malloc(10);
char *f = (char *)malloc(10);
char *g = (char *)malloc(10);
char *h = (char *)malloc(10);
char *i = (char *)malloc(10);
// Print initial memory addresses
printf("Initial allocations:\n");
printf("a: %p\n", (void *)a);
printf("b: %p\n", (void *)b);
printf("c: %p\n", (void *)c);
printf("d: %p\n", (void *)d);
printf("e: %p\n", (void *)e);
printf("f: %p\n", (void *)f);
printf("g: %p\n", (void *)g);
printf("h: %p\n", (void *)h);
printf("i: %p\n", (void *)i);
// Fill tcache
free(a);
free(b);
free(c);
free(d);
free(e);
free(f);
free(g);
// Introduce double-free vulnerability in fast bin
free(h);
free(i);
free(h);
// Reallocate memory and print the addresses
char *a1 = (char *)malloc(10);
char *b1 = (char *)malloc(10);
char *c1 = (char *)malloc(10);
char *d1 = (char *)malloc(10);
char *e1 = (char *)malloc(10);
char *f1 = (char *)malloc(10);
char *g1 = (char *)malloc(10);
char *h1 = (char *)malloc(10);
char *i1 = (char *)malloc(10);
char *i2 = (char *)malloc(10);
// Print initial memory addresses
printf("After reallocations:\n");
printf("a1: %p\n", (void *)a1);
printf("b1: %p\n", (void *)b1);
printf("c1: %p\n", (void *)c1);
printf("d1: %p\n", (void *)d1);
printf("e1: %p\n", (void *)e1);
printf("f1: %p\n", (void *)f1);
printf("g1: %p\n", (void *)g1);
printf("h1: %p\n", (void *)h1);
printf("i1: %p\n", (void *)i1);
printf("i2: %p\n", (void *)i2);
return 0;
}
Neste exemplo, após preencher o tcache com vários chunks liberados (7), o código libera o chunk h
, depois o chunk i
, e então h
novamente, causando um double free (também conhecido como Fast Bin dup). Isso abre a possibilidade de receber endereços de memória sobrepostos ao realocar, significando que dois ou mais ponteiros podem apontar para a mesma localização de memória. Manipular dados através de um ponteiro pode então afetar o outro, criando um risco crítico de segurança e potencial para exploração.
Executando, note como i1
e i2
obtiveram o mesmo endereço:
Alocações iniciais:
a: 0xaaab0f0c22a0
b: 0xaaab0f0c22c0
c: 0xaaab0f0c22e0
d: 0xaaab0f0c2300
e: 0xaaab0f0c2320
f: 0xaaab0f0c2340
g: 0xaaab0f0c2360
h: 0xaaab0f0c2380
i: 0xaaab0f0c23a0
Após realocações:
a1: 0xaaab0f0c2360
b1: 0xaaab0f0c2340
c1: 0xaaab0f0c2320
d1: 0xaaab0f0c2300
e1: 0xaaab0f0c22e0
f1: 0xaaab0f0c22c0
g1: 0xaaab0f0c22a0
h1: 0xaaab0f0c2380
i1: 0xaaab0f0c23a0
i2: 0xaaab0f0c23a0
Exemplos
- Dragon Army. Hack The Box
- Podemos alocar apenas chunks do tamanho Fast-Bin, exceto para o tamanho
0x70
, o que impede a sobrescrita usual de__malloc_hook
. - Em vez disso, usamos endereços PIE que começam com
0x56
como alvo para Fast Bin dup (1/2 de chance). - Um lugar onde os endereços PIE são armazenados é em
main_arena
, que está dentro do Glibc e perto de__malloc_hook
. - Alvo um deslocamento específico de
main_arena
para alocar um chunk lá e continuar alocando chunks até alcançar__malloc_hook
para obter execução de código. - zero_to_hero. PicoCTF
- Usando bins Tcache e um overflow de byte nulo, podemos alcançar uma situação de double-free:
- Alocamos três chunks de tamanho
0x110
(A
,B
,C
) - Liberamos
B
- Liberamos
A
e alocamos novamente para usar o overflow de byte nulo - Agora o campo de tamanho de
B
é0x100
, em vez de0x111
, então podemos liberá-lo novamente - Temos um Tcache-bin de tamanho
0x110
e um de tamanho0x100
que apontam para o mesmo endereço. Portanto, temos um double free. - Aproveitamos o double free usando Tcache poisoning
Referências
{% hint style="success" %}
Aprenda e pratique AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Aprenda e pratique GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Support HackTricks
- Confira os planos de assinatura!
- Junte-se ao 💬 grupo do Discord ou ao grupo do telegram ou siga-nos no Twitter 🐦 @hacktricks_live.
- Compartilhe truques de hacking enviando PRs para o HackTricks e HackTricks Cloud repositórios do github.