7.2 KiB
{% hint style="success" %}
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
Veoma jednostavno, ovaj alat će nam pomoći da pronađemo vrednosti za promenljive koje treba da zadovolje određene uslove, a ručno izračunavanje bi bilo veoma dosadno. Stoga, možete Z3 ukazati na uslove koje promenljive treba da zadovolje i on će pronaći neke vrednosti (ako je moguće).
Neki tekstovi i primeri su preuzeti sa https://ericpony.github.io/z3py-tutorial/guide-examples.htm
Osnovne Operacije
Booleovi/And/Or/Not
#pip3 install z3-solver
from z3 import *
s = Solver() #The solver will be given the conditions
x = Bool("x") #Declare the symbos x, y and z
y = Bool("y")
z = Bool("z")
# (x or y or !z) and y
s.add(And(Or(x,y,Not(z)),y))
s.check() #If response is "sat" then the model is satifable, if "unsat" something is wrong
print(s.model()) #Print valid values to satisfy the model
Ints/Simplify/Reals
from z3 import *
x = Int('x')
y = Int('y')
#Simplify a "complex" ecuation
print(simplify(And(x + 1 >= 3, x**2 + x**2 + y**2 + 2 >= 5)))
#And(x >= 2, 2*x**2 + y**2 >= 3)
#Note that Z3 is capable to treat irrational numbers (An irrational algebraic number is a root of a polynomial with integer coefficients. Internally, Z3 represents all these numbers precisely.)
#so you can get the decimals you need from the solution
r1 = Real('r1')
r2 = Real('r2')
#Solve the ecuation
print(solve(r1**2 + r2**2 == 3, r1**3 == 2))
#Solve the ecuation with 30 decimals
set_option(precision=30)
print(solve(r1**2 + r2**2 == 3, r1**3 == 2))
Štampanje modela
from z3 import *
x, y, z = Reals('x y z')
s = Solver()
s.add(x > 1, y > 1, x + y > 3, z - x < 10)
s.check()
m = s.model()
print ("x = %s" % m[x])
for d in m.decls():
print("%s = %s" % (d.name(), m[d]))
Mašinska Aritmetika
Moderni CPU-i i mainstream programski jezici koriste aritmetiku nad fiksno velikim bit-vektorima. Mašinska aritmetika je dostupna u Z3Py kao Bit-Vektori.
from z3 import *
x = BitVec('x', 16) #Bit vector variable "x" of length 16 bit
y = BitVec('y', 16)
e = BitVecVal(10, 16) #Bit vector with value 10 of length 16bits
a = BitVecVal(-1, 16)
b = BitVecVal(65535, 16)
print(simplify(a == b)) #This is True!
a = BitVecVal(-1, 32)
b = BitVecVal(65535, 32)
print(simplify(a == b)) #This is False
Potpisani/Ne potpisani brojevi
Z3 pruža posebne potpisane verzije aritmetičkih operacija gde je važno da li se bit-vektor tretira kao potpisan ili ne potpisan. U Z3Py, operatori <, <=, >, >=, /, % i >> odgovaraju potpisanim verzijama. Odgovarajući ne potpisani operatori su ULT, ULE, UGT, UGE, UDiv, URem i LShR.
from z3 import *
# Create to bit-vectors of size 32
x, y = BitVecs('x y', 32)
solve(x + y == 2, x > 0, y > 0)
# Bit-wise operators
# & bit-wise and
# | bit-wise or
# ~ bit-wise not
solve(x & y == ~y)
solve(x < 0)
# using unsigned version of <
solve(ULT(x, 0))
Functions
Interpretirane funkcije kao što su aritmetičke gde funkcija + ima fiksnu standardnu interpretaciju (sabira dva broja). Neinterpretirane funkcije i konstante su maksimalno fleksibilne; omogućavaju bilo koju interpretaciju koja je dosledna sa ograničenjima nad funkcijom ili konstantom.
Primer: f primenjena dva puta na x rezultira ponovo u x, ali f primenjena jednom na x je drugačija od x.
from z3 import *
x = Int('x')
y = Int('y')
f = Function('f', IntSort(), IntSort())
s = Solver()
s.add(f(f(x)) == x, f(x) == y, x != y)
s.check()
m = s.model()
print("f(f(x)) =", m.evaluate(f(f(x))))
print("f(x) =", m.evaluate(f(x)))
print(m.evaluate(f(2)))
s.add(f(x) == 4) #Find the value that generates 4 as response
s.check()
print(m.model())
Primeri
Rešavač Sudokua
# 9x9 matrix of integer variables
X = [ [ Int("x_%s_%s" % (i+1, j+1)) for j in range(9) ]
for i in range(9) ]
# each cell contains a value in {1, ..., 9}
cells_c = [ And(1 <= X[i][j], X[i][j] <= 9)
for i in range(9) for j in range(9) ]
# each row contains a digit at most once
rows_c = [ Distinct(X[i]) for i in range(9) ]
# each column contains a digit at most once
cols_c = [ Distinct([ X[i][j] for i in range(9) ])
for j in range(9) ]
# each 3x3 square contains a digit at most once
sq_c = [ Distinct([ X[3*i0 + i][3*j0 + j]
for i in range(3) for j in range(3) ])
for i0 in range(3) for j0 in range(3) ]
sudoku_c = cells_c + rows_c + cols_c + sq_c
# sudoku instance, we use '0' for empty cells
instance = ((0,0,0,0,9,4,0,3,0),
(0,0,0,5,1,0,0,0,7),
(0,8,9,0,0,0,0,4,0),
(0,0,0,0,0,0,2,0,8),
(0,6,0,2,0,1,0,5,0),
(1,0,2,0,0,0,0,0,0),
(0,7,0,0,0,0,5,2,0),
(9,0,0,0,6,5,0,0,0),
(0,4,0,9,7,0,0,0,0))
instance_c = [ If(instance[i][j] == 0,
True,
X[i][j] == instance[i][j])
for i in range(9) for j in range(9) ]
s = Solver()
s.add(sudoku_c + instance_c)
if s.check() == sat:
m = s.model()
r = [ [ m.evaluate(X[i][j]) for j in range(9) ]
for i in range(9) ]
print_matrix(r)
else:
print "failed to solve"
Reference
{% hint style="success" %}
Učite i vežbajte AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Učite i vežbajte GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Podržite HackTricks
- Proverite planove pretplate!
- Pridružite se 💬 Discord grupi ili telegram grupi ili pratite nas na Twitteru 🐦 @hacktricks_live.
- Podelite hakerske trikove slanjem PR-ova na HackTricks i HackTricks Cloud github repozitorijume.