* Você trabalha em uma **empresa de cibersegurança**? Você quer ver sua **empresa anunciada no HackTricks**? ou você quer ter acesso à **última versão do PEASS ou baixar o HackTricks em PDF**? Verifique os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* **Junte-se ao** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-me** no **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para o** [**repositório hacktricks**](https://github.com/carlospolop/hacktricks) **e** [**repositório hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).
O Mach usa **tarefas** como a **unidade mínima** para compartilhar recursos, e cada tarefa pode conter **várias threads**. Essas **tarefas e threads são mapeadas em processos e threads POSIX na proporção de 1:1**.
A comunicação entre tarefas ocorre por meio da Comunicação entre Processos (IPC) do Mach, utilizando canais de comunicação unidirecionais. **As mensagens são transferidas entre portas**, que funcionam como **filas de mensagens** gerenciadas pelo kernel.
Cada processo possui uma **tabela IPC**, onde é possível encontrar as **portas mach do processo**. O nome de uma porta mach é na verdade um número (um ponteiro para o objeto do kernel).
Um processo também pode enviar um nome de porta com alguns direitos **para uma tarefa diferente** e o kernel fará com que essa entrada na **tabela IPC da outra tarefa** apareça.
Os direitos de porta, que definem quais operações uma tarefa pode executar, são fundamentais para essa comunicação. Os possíveis **direitos de porta** são:
* **Direito de recebimento**, que permite receber mensagens enviadas para a porta. As portas Mach são filas MPSC (múltiplos produtores, único consumidor), o que significa que pode haver apenas **um direito de recebimento para cada porta** em todo o sistema (ao contrário de pipes, onde vários processos podem ter descritores de arquivo para a extremidade de leitura de um pipe).
* Uma **tarefa com o direito de recebimento** pode receber mensagens e **criar direitos de envio**, permitindo o envio de mensagens. Originalmente, apenas a **própria tarefa tem o direito de recebimento sobre sua porta**.
* O direito de envio pode ser **clonado**, então uma tarefa que possui um direito de envio pode clonar o direito e **concedê-lo a uma terceira tarefa**.
* **Direito de conjunto de portas**, que denota um _conjunto de portas_ em vez de uma única porta. Desenfileirar uma mensagem de um conjunto de portas desenfileira uma mensagem de uma das portas que ele contém. Conjuntos de portas podem ser usados para ouvir várias portas simultaneamente, assim como `select`/`poll`/`epoll`/`kqueue` no Unix.
* **Nome morto**, que não é um direito de porta real, mas apenas um espaço reservado. Quando uma porta é destruída, todos os direitos de porta existentes para a porta se tornam nomes mortos.
**As tarefas podem transferir direitos de ENVIO para outras**, permitindo que elas enviem mensagens de volta. **Os direitos de ENVIO também podem ser clonados**, então uma tarefa pode duplicar e dar o direito a uma terceira tarefa. Isso, combinado com um processo intermediário conhecido como **servidor de inicialização**, permite uma comunicação efetiva entre tarefas.
1. A tarefa **A** inicia uma **nova porta**, obtendo um **direito de RECEBIMENTO** no processo.
2. A tarefa **A**, sendo a detentora do direito de RECEBIMENTO, **gera um direito de ENVIO para a porta**.
3. A tarefa **A** estabelece uma **conexão** com o **servidor de inicialização**, fornecendo o **nome do serviço da porta** e o **direito de ENVIO** por meio de um procedimento conhecido como registro de inicialização.
4. A tarefa **B** interage com o **servidor de inicialização** para executar uma **busca de inicialização para o serviço**. Se for bem-sucedido, o **servidor duplica o direito de ENVIO** recebido da Tarefa A e o **transmite para a Tarefa B**.
6. Para uma comunicação bidirecional, geralmente a tarefa **B** gera uma nova porta com um direito de **RECEBIMENTO** e um direito de **ENVIO**, e dá o **direito de ENVIO à Tarefa A** para que ela possa enviar mensagens para a TAREFA B (comunicação bidirecional).
O servidor de inicialização **não pode autenticar** o nome do serviço reivindicado por uma tarefa. Isso significa que uma **tarefa** poderia potencialmente **se passar por qualquer tarefa do sistema**, como reivindicar falsamente um nome de serviço de autorização e, em seguida, aprovar todas as solicitações.
Em seguida, a Apple armazena os **nomes dos serviços fornecidos pelo sistema** em arquivos de configuração seguros, localizados em diretórios protegidos pelo SIP: `/System/Library/LaunchDaemons` e `/System/Library/LaunchAgents`. Ao lado de cada nome de serviço, o **binário associado também é armazenado**. O servidor de inicialização criará e manterá um **direito de RECEBIMENTO para cada um desses nomes de serviço**.
Para esses serviços predefinidos, o **processo de busca difere um pouco**. Quando um nome de serviço está sendo procurado, o launchd inicia o serviço dinamicamente. O novo fluxo de trabalho é o seguinte:
* O **launchd** verifica se a tarefa está em execução e, se não estiver, a **inicia**.
* A tarefa **A** (o serviço) realiza um **check-in de inicialização**. Aqui, o **servidor de inicialização** cria um direito de ENVIO, o retém e **transfere o direito de RECEBIMENTO para a Tarefa A**.
* O launchd duplica o **direito de ENVIO e o envia para a Tarefa B**.
* A tarefa **B** gera uma nova porta com um direito de **RECEBIMENTO** e um direito de **ENVIO**, e dá o **direito de ENVIO à Tarefa A** (o svc) para que ela possa enviar mensagens para a TAREFA B (comunicação bidirecional).
No entanto, esse processo se aplica apenas a tarefas do sistema predefinidas. Tarefas não do sistema ainda operam conforme descrito originalmente, o que poderia permitir potencialmente a falsificação.
As mensagens Mach são enviadas ou recebidas usando a função **`mach_msg`** (que é essencialmente uma syscall). Ao enviar, o primeiro argumento para essa chamada deve ser a **mensagem**, que deve começar com um **`mach_msg_header_t`** seguido da carga útil real:
```c
typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_name_t msgh_voucher_port;
mach_msg_id_t msgh_id;
} mach_msg_header_t;
```
O processo que pode **receber** mensagens em uma porta mach é dito possuir o _**direito de recebimento**_, enquanto os **remetentes** possuem um _**direito de envio**_ ou um _**direito de envio único**_. O direito de envio único, como o nome sugere, só pode ser usado para enviar uma única mensagem e depois é invalidado.
Para alcançar uma **comunicação bidirecional** fácil, um processo pode especificar uma **porta mach** no **cabeçalho da mensagem mach** chamada de porta de resposta (**`msgh_local_port`**), onde o **destinatário** da mensagem pode **enviar uma resposta** a essa mensagem. Os bits de sinalizador em **`msgh_bits`** podem ser usados para **indicar** que um **direito de envio único** deve ser derivado e transferido para esta porta (`MACH_MSG_TYPE_MAKE_SEND_ONCE`).
Observe que esse tipo de comunicação bidirecional é usado em mensagens XPC que esperam uma resposta (`xpc_connection_send_message_with_reply` e `xpc_connection_send_message_with_reply_sync`). Mas **geralmente são criadas portas diferentes** como explicado anteriormente para criar a comunicação bidirecional.
Observe que as **mensagens mach são enviadas por uma **_**porta mach**_, que é um canal de comunicação **único receptor**, **múltiplos remetentes** incorporado no kernel mach. **Múltiplos processos** podem **enviar mensagens** para uma porta mach, mas em qualquer momento apenas **um único processo pode lê-la**.
Você pode instalar essa ferramenta no iOS baixando-a em [http://newosxbook.com/tools/binpack64-256.tar.gz](http://newosxbook.com/tools/binpack64-256.tar.gz)
Observe como o **remetente****aloca** uma porta, cria um **direito de envio** para o nome `org.darlinghq.example` e o envia para o **servidor de inicialização**, enquanto o remetente solicita o **direito de envio** desse nome e o utiliza para **enviar uma mensagem**.
* **Porta do host**: Se um processo tem o privilégio de **enviar** sobre esta porta, ele pode obter **informações** sobre o **sistema** (por exemplo, `host_processor_info`).
* **Porta privilégiada do host**: Um processo com o direito de **enviar** sobre esta porta pode realizar **ações privilegiadas**, como carregar uma extensão do kernel. O **processo precisa ser root** para obter essa permissão.
* Além disso, para chamar a API **`kext_request`**, é necessário ter outras permissões **`com.apple.private.kext*`**, que são concedidas apenas a binários da Apple.
* **Porta do nome da tarefa**: Uma versão não privilegiada da _porta da tarefa_. Ela faz referência à tarefa, mas não permite controlá-la. A única coisa que parece estar disponível através dela é `task_info()`.
* **Porta da tarefa** (também conhecida como porta do kernel)**:** Com permissão de envio sobre esta porta, é possível controlar a tarefa (ler/escrever memória, criar threads...).
* Chame `mach_task_self()` para **obter o nome** desta porta para a tarefa chamadora. Esta porta é **herdada** apenas através do **`exec()`**; uma nova tarefa criada com `fork()` recebe uma nova porta de tarefa (como um caso especial, uma tarefa também recebe uma nova porta de tarefa após `exec()` em um binário suid). A única maneira de criar uma tarefa e obter sua porta é realizar a ["dança de troca de porta"](https://robert.sesek.com/2014/1/changes\_to\_xnu\_mach\_ipc.html) enquanto faz um `fork()`.
* Se o aplicativo tiver a permissão **`com.apple.security.get-task-allow`**, processos do **mesmo usuário podem acessar a porta da tarefa** (comumente adicionado pelo Xcode para depuração). O processo de **notarização** não permitirá isso em lançamentos de produção.
* Aplicativos com a permissão **`com.apple.system-task-ports`** podem obter a **porta da tarefa para qualquer** processo, exceto o kernel. Em versões mais antigas, era chamada **`task_for_pid-allow`**. Isso é concedido apenas a aplicativos da Apple.
* **Root pode acessar portas de tarefas** de aplicativos **não** compilados com um tempo de execução **fortificado** (e não da Apple).
**Compile** o programa anterior e adicione as **entitlements** para poder injetar código com o mesmo usuário (caso contrário, você precisará usar **sudo**).
No macOS, as **threads** podem ser manipuladas através do **Mach** ou usando a API **posix `pthread`**. A thread que geramos na injeção anterior foi gerada usando a API Mach, portanto, **não é compatível com posix**.
Foi possível **injetar um shellcode simples** para executar um comando porque não era necessário trabalhar com APIs compatíveis com posix, apenas com Mach. Injeções **mais complexas** precisariam que a **thread** também fosse **compatível com posix**.
Portanto, para **melhorar a thread**, ela deve chamar **`pthread_create_from_mach_thread`**, que irá **criar um pthread válido**. Em seguida, esse novo pthread pode **chamar dlopen** para **carregar uma dylib** do sistema, então, em vez de escrever um novo shellcode para executar ações diferentes, é possível carregar bibliotecas personalizadas.
XPC, que significa Comunicação Interprocessos XNU (o kernel usado pelo macOS), é uma estrutura para **comunicação entre processos** no macOS e iOS. O XPC fornece um mecanismo para fazer **chamadas de método assíncronas e seguras entre diferentes processos** no sistema. É parte do paradigma de segurança da Apple, permitindo a **criação de aplicativos com privilégios separados**, onde cada **componente** é executado com **apenas as permissões necessárias** para realizar seu trabalho, limitando assim os danos potenciais de um processo comprometido.
O MIG foi criado para **simplificar o processo de criação de código Mach IPC**. Basicamente, ele **gera o código necessário** para que o servidor e o cliente se comuniquem com uma definição específica. Mesmo que o código gerado seja feio, um desenvolvedor só precisará importá-lo e seu código será muito mais simples do que antes.
* Você trabalha em uma **empresa de segurança cibernética**? Gostaria de ver sua **empresa anunciada no HackTricks**? Ou gostaria de ter acesso à **última versão do PEASS ou baixar o HackTricks em PDF**? Confira os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* Descubra [**A Família PEASS**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* Adquira o [**swag oficial do PEASS & HackTricks**](https://peass.creator-spring.com)
* **Junte-se ao** [**💬**](https://emojipedia.org/speech-balloon/) [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-me** no **Twitter** [**🐦**](https://github.com/carlospolop/hacktricks/tree/7af18b62b3bdc423e11444677a6a73d4043511e9/\[https:/emojipedia.org/bird/README.md)[**@carlospolopm**](https://twitter.com/hacktricks\_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para o** [**repositório hacktricks**](https://github.com/carlospolop/hacktricks) **e para o** [**repositório hacktricks-cloud**](https://github.com/carlospolop/hacktricks-cloud).