<summary><strong>Aprenda hacking AWS do zero ao avançado com</strong><ahref="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Se você deseja ver sua **empresa anunciada no HackTricks** ou **baixar o HackTricks em PDF**, confira os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* Descubra [**A Família PEASS**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Junte-se ao** 💬 [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-nos** no **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para o** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud) repositórios do github.
O Mach utiliza **tarefas** como a **unidade mais pequena** para compartilhar recursos, e cada tarefa pode conter **múltiplas threads**. Essas **tarefas e threads são mapeadas em uma relação 1:1 com processos e threads POSIX**.
A comunicação entre tarefas ocorre via Comunicação entre Processos Mach (IPC), utilizando canais de comunicação unidirecional. **As mensagens são transferidas entre portas**, que funcionam como **filas de mensagens** gerenciadas pelo kernel.
Cada processo possui uma **tabela IPC**, onde é possível encontrar as **portas mach do processo**. O nome de uma porta mach é na verdade um número (um ponteiro para o objeto do kernel).
Um processo também pode enviar um nome de porta com alguns direitos **para uma tarefa diferente** e o kernel fará com que essa entrada na **tabela IPC da outra tarefa** apareça.
Os direitos de porta, que definem quais operações uma tarefa pode realizar, são essenciais para essa comunicação. Os possíveis **direitos de porta** são ([definições daqui](https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html)):
* **Direito de Receber**, que permite receber mensagens enviadas para a porta. As portas Mach são filas MPSC (múltiplos produtores, um consumidor), o que significa que pode haver apenas **um direito de receber para cada porta** em todo o sistema (ao contrário de pipes, onde vários processos podem ter descritores de arquivo para a extremidade de leitura de um pipe).
* Uma **tarefa com o Direito de Receber** pode receber mensagens e **criar Direitos de Envio**, permitindo enviar mensagens. Originalmente, apenas a **própria tarefa tem o Direito de Receber sobre sua porta**.
* **Direito de Envio**, que permite enviar mensagens para a porta.
* O Direito de Envio pode ser **clonado** para que uma tarefa que possui um Direito de Envio possa clonar o direito e **concedê-lo a uma terceira tarefa**.
* **Direito de Envio-único**, que permite enviar uma mensagem para a porta e depois desaparece.
* **Direito de conjunto de portas**, que denota um _conjunto de portas_ em vez de uma única porta. Desenfileirar uma mensagem de um conjunto de portas desenfileira uma mensagem de uma das portas que ele contém. Os conjuntos de portas podem ser usados para escutar várias portas simultaneamente, muito parecido com `select`/`poll`/`epoll`/`kqueue` no Unix.
* **Nome morto**, que não é um direito de porta real, mas apenas um espaço reservado. Quando uma porta é destruída, todos os direitos de porta existentes para a porta se tornam nomes mortos.
**As tarefas podem transferir Direitos de ENVIO para outras**, permitindo que elas enviem mensagens de volta. **Os Direitos de ENVIO também podem ser clonados, para que uma tarefa possa duplicar e dar o direito a uma terceira tarefa**. Isso, combinado com um processo intermediário conhecido como **servidor de inicialização**, permite uma comunicação eficaz entre tarefas.
2. A Tarefa **A**, sendo a detentora do Direito de RECEBER, **gera um Direito de ENVIO para a porta**.
3. A Tarefa **A** estabelece uma **conexão** com o **servidor de inicialização**, fornecendo o **nome do serviço da porta** e o **Direito de ENVIO** por meio de um procedimento conhecido como registro de inicialização.
4. A Tarefa **B** interage com o **servidor de inicialização** para executar uma **busca de inicialização para o nome do serviço**. Se bem-sucedido, o **servidor duplica o Direito de ENVIO** recebido da Tarefa A e **transmite para a Tarefa B**.
5. Ao adquirir um Direito de ENVIO, a Tarefa **B** é capaz de **formular** uma **mensagem** e enviá-la **para a Tarefa A**.
6. Para uma comunicação bidirecional, geralmente a tarefa **B** gera uma nova porta com um **direito de RECEBER** e um **direito de ENVIO**, e dá o **direito de ENVIO para a Tarefa A** para que ela possa enviar mensagens para a Tarefa B (comunicação bidirecional).
O servidor de inicialização **não pode autenticar** o nome do serviço reivindicado por uma tarefa. Isso significa que uma **tarefa** poderia potencialmente **fingir ser qualquer tarefa do sistema**, como reivindicar falsamente um nome de serviço de autorização e então aprovar cada solicitação.
Então, a Apple armazena os **nomes de serviços fornecidos pelo sistema** em arquivos de configuração seguros, localizados em diretórios protegidos pelo SIP: `/System/Library/LaunchDaemons` e `/System/Library/LaunchAgents`. Junto de cada nome de serviço, o **binário associado também é armazenado**. O servidor de inicialização, criará e manterá um **Direito de RECEBER para cada um desses nomes de serviço**.
Para esses serviços predefinidos, o **processo de busca difere ligeiramente**. Quando um nome de serviço está sendo buscado, o launchd inicia o serviço dinamicamente. O novo fluxo de trabalho é o seguinte:
* O **launchd** verifica se a tarefa está em execução e, se não estiver, a **inicia**.
* A Tarefa **A** (o serviço) realiza um **check-in de inicialização**. Aqui, o **servidor de inicialização** cria um Direito de ENVIO, o mantém e **transfere o Direito de RECEBER para a Tarefa A**.
* O launchd duplica o **Direito de ENVIO e envia para a Tarefa B**.
* A Tarefa **B** gera uma nova porta com um **direito de RECEBER** e um **direito de ENVIO**, e dá o **direito de ENVIO para a Tarefa A** (o svc) para que ela possa enviar mensagens para a Tarefa B (comunicação bidirecional).
No entanto, esse processo se aplica apenas a tarefas de sistema predefinidas. Tarefas não pertencentes ao sistema ainda operam conforme descrito originalmente, o que poderia potencialmente permitir a falsificação.
[Encontre mais informações aqui](https://sector7.computest.nl/post/2023-10-xpc-audit-token-spoofing/)
A função `mach_msg`, essencialmente uma chamada de sistema, é utilizada para enviar e receber mensagens Mach. A função requer que a mensagem seja enviada como argumento inicial. Esta mensagem deve começar com uma estrutura `mach_msg_header_t`, seguida pelo conteúdo da mensagem. A estrutura é definida da seguinte forma:
Os processos que possuem um _**direito de recebimento**_ podem receber mensagens em uma porta Mach. Por outro lado, os **remetentes** recebem um _**direito de envio**_ ou um _**direito de envio único**_. O direito de envio único é exclusivamente para enviar uma única mensagem, após o que se torna inválido.
Para alcançar uma **comunicação bidirecional** fácil, um processo pode especificar uma **porta mach** no cabeçalho da mensagem mach chamada _porta de resposta_ (**`msgh_local_port`**) onde o **receptor** da mensagem pode **enviar uma resposta** a essa mensagem. Os bits de sinalização em **`msgh_bits`** podem ser usados para **indicar** que um **direito de envio único** deve ser derivado e transferido para esta porta (`MACH_MSG_TYPE_MAKE_SEND_ONCE`).
Observe que esse tipo de comunicação bidirecional é usado em mensagens XPC que esperam uma resposta (`xpc_connection_send_message_with_reply` e `xpc_connection_send_message_with_reply_sync`). Mas **geralmente são criadas portas diferentes** como explicado anteriormente para criar a comunicação bidirecional.
Observe que **as mensagens mach são enviadas por uma **_**porta mach**_, que é um canal de comunicação de **um único receptor**, **múltiplos remetentes** integrado ao kernel mach. **Múltiplos processos** podem **enviar mensagens** para uma porta mach, mas em qualquer momento apenas **um único processo pode ler** dela.
Podes instalar esta ferramenta no iOS ao descarregá-la de [http://newosxbook.com/tools/binpack64-256.tar.gz ](http://newosxbook.com/tools/binpack64-256.tar.gz)
Note como o **emissor****aloca** uma porta, cria um **direito de envio** para o nome `org.darlinghq.example` e o envia para o **servidor de arranque** enquanto o emissor pediu o **direito de envio** desse nome e o usou para **enviar uma mensagem**.
- **Porta do host**: Se um processo tem o privilégio de **Enviar** sobre esta porta, ele pode obter **informações** sobre o **sistema** (por exemplo, `host_processor_info`).
- **Porta de privilégio do host**: Um processo com direito de **Enviar** sobre esta porta pode realizar **ações privilegiadas** como carregar uma extensão de kernel. O **processo precisa ser root** para obter essa permissão.
- Além disso, para chamar a API **`kext_request`**, é necessário ter outros privilégios **`com.apple.private.kext*`**, que são concedidos apenas a binários da Apple.
- **Porta do nome da tarefa**: Uma versão não privilegiada da _porta da tarefa_. Ela faz referência à tarefa, mas não permite controlá-la. A única coisa que parece estar disponível por meio dela é `task_info()`.
- **Porta da tarefa** (também conhecida como porta do kernel)**:** Com permissão de Envio sobre esta porta, é possível controlar a tarefa (ler/escrever memória, criar threads...).
- Chame `mach_task_self()` para **obter o nome** desta porta para a tarefa do chamador. Esta porta é apenas **herdada** através do **`exec()`**; uma nova tarefa criada com `fork()` obtém uma nova porta de tarefa (como caso especial, uma tarefa também obtém uma nova porta de tarefa após `exec()` em um binário suid). A única maneira de iniciar uma tarefa e obter sua porta é realizar a ["dança de troca de portas"](https://robert.sesek.com/2014/1/changes\_to\_xnu\_mach\_ipc.html) enquanto faz um `fork()`.
- Estas são as restrições para acessar a porta (do `macos_task_policy` do binário `AppleMobileFileIntegrity`):
- Se o aplicativo tiver o privilégio **`com.apple.security.get-task-allow`**, processos do **mesmo usuário podem acessar a porta da tarefa** (comumente adicionado pelo Xcode para depuração). O processo de **notarização** não permitirá isso em lançamentos de produção.
- Aplicativos com o privilégio **`com.apple.system-task-ports`** podem obter a **porta da tarefa de qualquer** processo, exceto o kernel. Em versões mais antigas, era chamado de **`task_for_pid-allow`**. Isso é concedido apenas a aplicativos da Apple.
- **Root pode acessar portas de tarefas** de aplicativos **não** compilados com um tempo de execução **fortificado** (e não da Apple).
Inter-Process Communication (IPC) mechanisms are essential for processes to communicate with each other on macOS. There are various IPC mechanisms available on macOS, such as Mach ports, XPC services, Distributed Objects, and UNIX domain sockets.
Mach ports are a fundamental IPC mechanism on macOS, allowing processes to send messages and data between each other. They are used by the system and applications for various purposes, such as inter-process communication and synchronization.
XPC Services are a high-level IPC mechanism provided by the XPC framework on macOS. They allow applications to create separate processes to perform specific tasks in a secure and isolated manner. XPC Services use Mach ports for communication between processes.
Distributed Objects is an IPC mechanism that allows objects to be passed between processes on macOS. It enables applications to communicate and share objects across different processes using a proxy mechanism.
UNIX domain sockets are another IPC mechanism available on macOS, allowing communication between processes on the same system. They provide a way for processes to exchange data locally without going through the network stack.
Understanding the different IPC mechanisms available on macOS is crucial for developers and security professionals to design secure and efficient communication between processes. Each IPC mechanism has its strengths and weaknesses, and choosing the right one depends on the specific requirements of the application or system.
**Compile** o programa anterior e adicione as **permissões** para poder injetar código com o mesmo usuário (caso contrário, será necessário usar **sudo**).
No macOS, **threads** podem ser manipulados via **Mach** ou usando a **API posix `pthread`**. A thread que geramos na injeção anterior foi gerada usando a api Mach, então **não é compatível com posix**.
Foi possível **injetar um shellcode simples** para executar um comando porque **não precisava trabalhar com apis compatíveis com posix**, apenas com Mach. **Injeções mais complexas** precisariam que a **thread** também fosse **compatível com posix**.
Portanto, para **melhorar a thread**, ela deve chamar **`pthread_create_from_mach_thread`** que irá **criar um pthread válido**. Em seguida, este novo pthread poderia **chamar dlopen** para **carregar uma dylib** do sistema, então em vez de escrever novo shellcode para realizar ações diferentes, é possível carregar bibliotecas personalizadas.
XPC, que significa Comunicação entre Processos XNU (o kernel usado pelo macOS), é um framework para **comunicação entre processos** no macOS e iOS. XPC fornece um mecanismo para fazer **chamadas de método seguras e assíncronas entre diferentes processos** no sistema. É parte do paradigma de segurança da Apple, permitindo a **criação de aplicativos com separação de privilégios** onde cada **componente** é executado com **apenas as permissões necessárias** para realizar seu trabalho, limitando assim o dano potencial de um processo comprometido.
O MIG foi criado para **simplificar o processo de criação de código Mach IPC**. Basicamente, ele **gera o código necessário** para o servidor e o cliente se comunicarem com uma definição fornecida. Mesmo que o código gerado seja feio, um desenvolvedor só precisará importá-lo e seu código será muito mais simples do que antes.
<summary><strong>Aprenda hacking AWS do zero ao avançado com</strong><ahref="https://training.hacktricks.xyz/courses/arte"><strong>htARTE (HackTricks AWS Red Team Expert)</strong></a><strong>!</strong></summary>
* Se você deseja ver sua **empresa anunciada no HackTricks** ou **baixar o HackTricks em PDF**, confira os [**PLANOS DE ASSINATURA**](https://github.com/sponsors/carlospolop)!
* Adquira o [**swag oficial PEASS & HackTricks**](https://peass.creator-spring.com)
* Descubra [**A Família PEASS**](https://opensea.io/collection/the-peass-family), nossa coleção exclusiva de [**NFTs**](https://opensea.io/collection/the-peass-family)
* **Junte-se ao** 💬 [**grupo Discord**](https://discord.gg/hRep4RUj7f) ou ao [**grupo telegram**](https://t.me/peass) ou **siga-nos** no **Twitter** 🐦 [**@carlospolopm**](https://twitter.com/hacktricks_live)**.**
* **Compartilhe seus truques de hacking enviando PRs para os repositórios do** [**HackTricks**](https://github.com/carlospolop/hacktricks) e [**HackTricks Cloud**](https://github.com/carlospolop/hacktricks-cloud).