The translation is fairly direct though it adds some duplication, for example
there are multiple "match" statements that mimic function overloading.
Rust has no overloading, and we cannot have generic methods in the Node trait
(due to a Rust limitation, the error is like "cannot be made into an object")
so we include the type name in method names.
Give clients like "indent_visitor_t" a Rust companion ("IndentVisitor")
that takes care of the AST traversal while the AST consumption remains
in C++ for now. In future, "IndentVisitor" should absorb the entirety of
"indent_visitor_t". This pattern requires that "fish_indent" be exposed
includable header to the CXX bridge.
Alternatively, we could define FFI wrappers for recursive AST traversal.
Rust requires we separate the AST visitors for "mut" and "const"
scenarios. Take this opportunity to concretize both visitors:
The only client that requires mutable access is the populator. To match the
structure of the C++ populator which makes heavy use of function overloading,
we need to add a bunch of functions to the trait. Since there is no other
mutable visit, this seems acceptable.
The "const" visitors never use "will_visit_fields_of()" or
"did_visit_fields_of()", so remove them (though this is debatable).
Like in the C++ implementation, the AST nodes themselves are largely defined
via macros. Union fields like "Statement" and "ArgumentOrRedirection"
do currently not use macros but may in future.
This commit also introduces a precedent for a type that is defined in one
CXX bridge and used in another one - "ParseErrorList". To make this work
we need to manually define "ExternType".
There is one annoyance with CXX: functions that take explicit lifetime
parameters require to be marked as unsafe. This makes little sense
because functions that return `&Foo` with implicit lifetime can be
misused the same way on the C++ side.
One notable change is that we cannot directly port "find_block_open_keyword()"
(which is used to compute an error) because it relies on the stack of visited
nodes. We cannot modify a stack of node references while we do the "mut"
walk. Happily, an idiomatic solution is easy: we can tell the AST visitor
to backtrack to the parent node and create the error there.
Since "node_t::accept_base" is no longer a template we don't need the
"node_visitation_t" trampoline anymore.
The added copying at the FFI boundary makes things slower (memcpy dominates
the profile) but it's not unusable, which is good news:
$ hyperfine ./fish.{old,new}" -c 'source ../share/completions/git.fish'"
Benchmark 1: ./fish.old -c 'source ../share/completions/git.fish'
Time (mean ± σ): 195.5 ms ± 2.9 ms [User: 190.1 ms, System: 4.4 ms]
Range (min … max): 193.2 ms … 205.1 ms 15 runs
Benchmark 2: ./fish.new -c 'source ../share/completions/git.fish'
Time (mean ± σ): 677.5 ms ± 62.0 ms [User: 665.4 ms, System: 10.0 ms]
Range (min … max): 611.7 ms … 805.5 ms 10 runs
Summary
'./fish.old -c 'source ../share/completions/git.fish'' ran
3.47 ± 0.32 times faster than './fish.new -c 'source ../share/completions/git.fish''
Leftovers:
- Enum variants are still snakecase; I didn't get around to changing this yet.
- "ast_type_to_string()" still returns a snakecase name. This could be
changed since it's not user visible.
More ugliness with types that cxx bridge can't recognize as being POD. Using
pointers to get/set `termios` values with an assert to make sure we're using
identical definitions on both sides (in cpp from the system headers and in rust
from the libc crate as exported).
I don't know why cxx bridge doesn't allow `SharedPtr<OpaqueRustType>` but we can
work around it in C++ by converting a `Box<T>` to a `shared_ptr<T>` then convert
it back when it needs to be destructed. I can't find a clean way of doing it
from the cxx bridge wrapper so for now it needs to be done manually in the C++
code.
Types/values that are drop-in ready over ffi are renamed to match the old cpp
names but for types that now differ due to ffi difficulties I've left the `_ffi`
in the function names to indicate that this isn't the "correct" way of using the
types/methods.
Closes#9240.
Squash of the following commits (in reverse-chronological order):
commit 03b5cab3dc40eca9d50a9df07a8a32524338a807
Author: Mahmoud Al-Qudsi <mqudsi@neosmart.net>
Date: Sun Sep 25 15:09:04 2022 -0500
Handle differently declared posix_spawnxxx_t on macOS
On macOS, posix_spawnattr_t and posix_spawn_file_actions_t are declared as void
pointers, so we can't use maybe_t's bool operator to test if it has a value.
commit aed83b8bb308120c0f287814d108b5914593630a
Author: Mahmoud Al-Qudsi <mqudsi@neosmart.net>
Date: Sun Sep 25 14:48:46 2022 -0500
Update maybe_t tests to reflect dynamic bool conversion
maybe_t<T> is now bool-convertible only if T _isn't_ already bool-convertible.
commit 2b5a12ca97b46f96b1c6b56a41aafcbdb0dfddd6
Author: Mahmoud Al-Qudsi <mqudsi@neosmart.net>
Date: Sun Sep 25 14:34:03 2022 -0500
Make maybe_t a little harder to misuse
We've had a few bugs over the years stemming from accidental misuse of maybe_t
with bool-convertible types. This patch disables maybe_t's bool operator if the
type T is already bool convertible, forcing the (barely worth mentioning) need
to use maybe_t::has_value() instead.
This patch both removes maybe_t's bool conversion for bool-convertible types and
updates the existing codebase to use the explicit `has_value()` method in place
of existing implicit bool conversions.
Let's hope this doesn't causes build failures for e.g. musl: I just
know it's good on macOS and our Linux CI.
It's been a long time.
One fix this brings, is I discovered we #include assert.h or cassert
in a lot of places. If those ever happen to be in a file that doesn't
include common.h, or we are before common.h gets included, we're
unawaringly working with the system 'assert' macro again, which
may get disabled for debug builds or at least has different
behavior on crash. We undef 'assert' and redefine it in common.h.
Those were all eliminated, except in one catch-22 spot for
maybe.h: it can't include common.h. A fix might be to
make a fish_assert.h that *usually* common.h exports.
ESCAPE_ALL is not really a helpful name. Also it's the most common flag.
Let's make it the default so we can remove this unhelpful name.
While at it, let's add a default value for the flags argument, which helps
most callers.
The absence of ESCAPE_ALL makes it only escape nonprintable characters
(with some exceptions). We use this for displaying strings in the completion
pager as well as for the human-readable output of "set", "set -S", "bind"
and "functions".
No functional change.
Resolves this warning:
> warning: 'sprintf' is deprecated: This function is provided for compatibility reasons only. Due to security concerns inherent in the design of sprintf(3), it is highly recommended that you use snprintf(3) instead. [-Wdeprecated-declarations]
This teaches `--on-signal SIGINT` (and by extension `trap cmd SIGINT`)
to work properly in scripts, not just interactively. Note any such
function will suppress the default behavior of exiting. Do this for
SIGTERM as well.
c4fb857dac (in 3.4.1) introduced a regression where process_exit
events would only fire once the job itself is complete. Allow
process_exit events to fire before that. Fixes#8914.
If we ever need any of these... they're in this commit:
fish_wcswidth_visible()
status_cmd_opts_t::feature_name
completion_t::is_naturally_less_than()
parser_t::set_empty_var_and_fire()
parser_t::get_block_desc()
parser_keywords_skip_arguments()
parser_keywords_is_block()
job_t::has_internal_proc()
fish_wcswidth_visible()
This is a big cleanup to how tty transfer works. Recall that when job
control is active, we transfer the tty to jobs via tcsetpgrp().
Previously, transferring was done "as needed" in continue_job. That is, if
we are running a job, and the job wants the terminal and does not have it,
we will transfer the tty at that point.
This got pretty weird when running mixed pipelines. For example:
cmd1 | func1 | cmd2
Here we would run `func1` before calling continue_job. Thus the tty
would be transferred by the nested function invocation, and also restored
by that invocation, potentially racing with tty manipulation from cmd1 or
cmd2.
In the new model, migrate the tty transfer responsibility outside of
continue_job. The caller of continue_job is then responsible for setting up
the tty. There's two places where this gets done:
1. In `exec_job`, where we run a job for the first time.
2. In `builtin_fg` where we continue a stopped job in the foreground.
Fixes#8699
This is a cleanup of job groups, rationalizing a bunch of stuff. Some
notable changes (none user-visible hopefully):
1. Previously, if a job group wanted a pgid, then we would assign it to the
first process to run in the job group. Now we deliberately mark which
process will own the pgroup, via a new `leads_pgrp` flag in process_t. This
eliminates a source of ambiguity.
2. Previously, if a job were run inside fish's pgroup, we would set fish's
pgroup as the group of the job. But this meant we had to check if the job
had fish's pgroup in lots of places, for example when calling tcsetpgrp.
Now a job group only has a pgrp if that pgrp is external (i.e. the job is
under job control).
Watching for exit events is rare, so check if we have any exit events
before actually emitting them. This saves about 2% of time in
external_cmds benchmark.
This untangles some of the complicated logic and loops around posting
job exit events, and invoking the fish_job_summary function. No
functional change here (hopefully).
Prior to this change, job_t::is_stopped() returned true if there were
zero running processes in the job. This meant that completed jobs were
reported as stopped. Stop doing this, it's a footgun.
Exited processes generate event_t::process_exit if they exit with a
nonzero status. Prior to this change, to avoid sending duplicate events,
we would clear the status. This is ugly since we're lying about the
process exit status. Use a real flag to prevent sending duplicate
notifications.
Prior to this change, a function with an on-job-exit event handler must be
added with the pgid of the job. But sometimes the pgid of the job is fish
itself (if job control is disabled) and the previous commit made last_pid
an actual pid from the job, instead of its pgroup.
Switch on-job-exit to accept any pid from the job (except fish itself).
This allows it to be used directly with $last_pid, except that it now
works if job control is off. This is implemented by "resolving" the pid to
the internal job id at the point the event handler is added.
Also switch to passing the last pid of the job, rather than its pgroup.
This aligns better with $last_pid.
When a job is placed in the background, fish will set the `$last_pid`
variable. Prior to this change, `$last_pid` was set to the process group
leader of the job. However this caussed problems when the job ran in
fish's process group, because then fish itself would be the process group
leader and commands like `wait` would not work.
Switch `$last_pid` to be the actual last pid of the pipeline. This brings
it in line with the `$!` variable from zsh and bash.
This is technically a breaking change, but it is unlikely to cause
problems, because `$last_pid` was already rather broken.
Fixes#5036Fixes#5832Fixes#7721
It is possible to run a function when a process exits via `function
--on-process-exit`, or when a job exits via `function --on-job-exits`.
Internally these were distinguished by the pid in the event: if it was
positive, then it was a process exit. If negative, it represents a pgid
and is a job exit. If zero, it fires for both jobs and processes, which is
pretty weird.
Switch to tracking these explicitly. Separate out the --on-process-exit
and --on-job-exit event types into separate types. Stop negating pgids as
well.
In preparation for using wait handles in --on-process-exit events, factor
wait handles into their own wait handle store. Also switch them to
per-process instead of per-job, which is a simplification.
This is preparing to address the problem where fish cannot wait on a
reaped job, because it only looks at the active job list. Introduce the
idea of a "wait handle," which is a thing that `wait` can use to check if
a job is finished. A job may produce its wait handle on demand, and
parser_t will save the wait handle from wait-able jobs at the point they
are reaped.
This change merely introduces the idea; the next change makes builtin_wait
start using it.
job_reap is now called more often. This optimizes it by doing an
early-out if there are no running jobs (common at the prompt) and also
skipping the save/restore status, since by inspection we also save and
restore the status when running event handlers.