fish-shell/src/iothread.h

128 lines
5 KiB
C
Raw Normal View History

// Handles IO that may hang.
2011-12-27 05:21:12 +00:00
#ifndef FISH_IOTHREAD_H
#define FISH_IOTHREAD_H
#include <pthread.h>
#include <cstdint> // for uint64_t
#include <functional>
#include <memory>
2017-02-11 02:47:02 +00:00
#include <type_traits>
#include "maybe.h"
/// \return the fd on which to listen for completion callbacks.
int iothread_port();
2011-12-27 05:21:12 +00:00
/// Services iothread completion callbacks.
void iothread_service_completion();
2011-12-27 05:21:12 +00:00
/// Services completions, except does not wait more than \p timeout_usec.
void iothread_service_completion_with_timeout(long timeout_usec);
/// Waits for all iothreads to terminate.
/// \return the number of threads that were running.
int iothread_drain_all();
// Internal implementation
void iothread_perform_impl(std::function<void()> &&func, std::function<void()> &&completion,
bool cant_wait = false);
// This is the glue part of the handler-completion handoff.
// Given a Handler and Completion, where the return value of Handler should be passed to Completion,
// this generates new void->void functions that wraps that behavior. The type T is the return type
// of Handler and the argument to Completion
template <typename Handler, typename Completion,
typename Result = typename std::result_of<Handler()>::type>
struct iothread_trampoline_t {
iothread_trampoline_t(const Handler &hand, const Completion &comp) {
auto result = std::make_shared<maybe_t<Result>>();
this->handler = [=] { *result = hand(); };
this->completion = [=] { comp(result->acquire()); };
}
// The generated handler and completion functions.
std::function<void()> handler;
std::function<void()> completion;
};
// Void specialization.
template <typename Handler, typename Completion>
struct iothread_trampoline_t<Handler, Completion, void> {
iothread_trampoline_t(std::function<void()> hand, std::function<void()> comp)
: handler(std::move(hand)), completion(std::move(comp)) {}
// The handler and completion functions.
std::function<void()> handler;
std::function<void()> completion;
};
// iothread_perform invokes a handler on a background thread, and then a completion function
// on the main thread. The value returned from the handler is passed to the completion.
// In other words, this is like Completion(Handler()) except the handler part is invoked
// on a background thread.
template <typename Handler, typename Completion>
void iothread_perform(const Handler &handler, const Completion &completion) {
iothread_trampoline_t<Handler, Completion> tramp(handler, completion);
iothread_perform_impl(std::move(tramp.handler), std::move(tramp.completion));
}
// variant of iothread_perform without a completion handler
inline void iothread_perform(std::function<void()> &&func) {
iothread_perform_impl(std::move(func), {});
}
/// Variant of iothread_perform that disrespects the thread limit.
/// It does its best to spawn a new thread if all other threads are occupied.
/// This is for cases where deferring a new thread might lead to deadlock.
inline void iothread_perform_cantwait(std::function<void()> &&func) {
iothread_perform_impl(std::move(func), {}, true);
}
/// Performs a function on the main thread, blocking until it completes.
void iothread_perform_on_main(std::function<void()> &&func);
/// Creates a pthread, manipulating the signal mask so that the thread receives no signals.
/// The thread is detached.
/// The pthread runs \p func.
/// \returns true on success, false on failure.
bool make_detached_pthread(void *(*func)(void *), void *param);
bool make_detached_pthread(std::function<void()> &&func);
/// \returns a thread ID for this thread.
/// Thread IDs are never repeated.
uint64_t thread_id();
/// A Debounce is a simple class which executes one function in a background thread,
/// while enqueuing at most one more. New execution requests overwrite the enqueued one.
/// It has an optional timeout; if a handler does not finish within the timeout, then
/// a new thread is spawned.
class debounce_t {
public:
/// Enqueue \p handler to be performed on a background thread, and \p completion (if any) to be
/// performed on the main thread. If a function is already enqueued, this overwrites it; that
/// function will not execute.
/// This returns the active thread token, which is only of interest to tests.
template <typename Handler, typename Completion>
void perform(Handler handler, Completion completion) {
iothread_trampoline_t<Handler, Completion> tramp(handler, completion);
perform_impl(std::move(tramp.handler), std::move(tramp.completion));
}
/// One-argument form with no completion.
uint64_t perform(std::function<void()> func) { return perform_impl(std::move(func), {}); }
explicit debounce_t(long timeout_msec = 0);
~debounce_t();
private:
/// Implementation of perform().
uint64_t perform_impl(std::function<void()> handler, std::function<void()> completion);
const long timeout_msec_;
struct impl_t;
const std::shared_ptr<impl_t> impl_;
};
2011-12-27 05:21:12 +00:00
#endif