fish-shell/src/io.cpp

349 lines
12 KiB
C++
Raw Normal View History

// Utilities for io redirection.
#include "config.h" // IWYU pragma: keep
#include "io.h"
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include <cstring>
#include <cwchar>
#include "common.h"
#include "exec.h"
#include "fallback.h" // IWYU pragma: keep
#include "fd_monitor.h"
2019-02-01 09:58:06 +00:00
#include "iothread.h"
#include "path.h"
#include "redirection.h"
#include "wutil.h" // IWYU pragma: keep
/// File redirection error message.
#define FILE_ERROR _(L"An error occurred while redirecting file '%ls'")
#define NOCLOB_ERROR _(L"The file '%ls' already exists")
/// Base open mode to pass to calls to open.
#define OPEN_MASK 0666
/// Provide the fd monitor used for background fillthread operations.
static fd_monitor_t &fd_monitor() {
// Deliberately leaked to avoid shutdown dtors.
static auto fdm = new fd_monitor_t();
return *fdm;
}
io_data_t::~io_data_t() = default;
io_pipe_t::~io_pipe_t() = default;
io_fd_t::~io_fd_t() = default;
io_close_t::~io_close_t() = default;
io_file_t::~io_file_t() = default;
io_bufferfill_t::~io_bufferfill_t() = default;
void io_close_t::print() const { std::fwprintf(stderr, L"close %d\n", fd); }
2013-01-09 08:02:04 +00:00
void io_fd_t::print() const { std::fwprintf(stderr, L"FD map %d -> %d\n", source_fd, fd); }
2013-01-15 07:37:33 +00:00
2020-04-26 03:25:28 +00:00
void io_file_t::print() const { std::fwprintf(stderr, L"file %d -> %d\n", file_fd_.fd(), fd); }
2013-01-15 08:18:03 +00:00
void io_pipe_t::print() const {
2020-04-26 03:25:28 +00:00
std::fwprintf(stderr, L"pipe {%d} (input: %s) -> %d\n", source_fd, is_input_ ? "yes" : "no",
fd);
}
2020-04-26 03:25:28 +00:00
void io_bufferfill_t::print() const {
std::fwprintf(stderr, L"bufferfill %d -> %d\n", write_fd_.fd(), fd);
}
void io_buffer_t::append_from_stream(const output_stream_t &stream) {
const separated_buffer_t<wcstring> &input = stream.buffer();
if (input.elements().empty() && !input.discarded()) return;
2019-02-01 09:58:06 +00:00
scoped_lock locker(append_lock_);
if (buffer_.discarded()) return;
if (input.discarded()) {
buffer_.set_discard();
return;
}
buffer_.append_wide_buffer(input);
}
ssize_t io_buffer_t::read_once(int fd) {
assert(fd >= 0 && "Invalid fd");
ASSERT_IS_LOCKED(append_lock_);
errno = 0;
char buff[4096 * 4];
// We want to swallow EINTR only; in particular EAGAIN needs to be returned back to the caller.
ssize_t ret;
do {
ret = read(fd, buff, sizeof buff);
} while (ret < 0 && errno == EINTR);
if (ret < 0 && errno != EAGAIN) {
wperror(L"read");
} else if (ret > 0) {
buffer_.append(&buff[0], &buff[ret]);
}
return ret;
}
void io_buffer_t::begin_filling(autoclose_fd_t fd) {
2019-02-01 09:58:06 +00:00
ASSERT_IS_MAIN_THREAD();
assert(!fillthread_running() && "Already have a fillthread");
2019-02-01 09:58:06 +00:00
// We want to fill buffer_ by reading from fd. fd is the read end of a pipe; the write end is
// owned by another process, or something else writing in fish.
// Pass fd to an fd_monitor. It will add fd to its select() loop, and give us a callback when
// the fd is readable, or when our timeout is hit. The usual path is that we will get called
// back, read a bit from the fd, and append it to the buffer. Eventually the write end of the
// pipe will be closed - probably the other process exited - and fd will be widowed; read() will
// then return 0 and we will stop reading.
// In exotic circumstances the write end of the pipe will not be closed; this may happen in
// e.g.:
// cmd ( background & ; echo hi )
// Here the background process will inherit the write end of the pipe and hold onto it forever.
// In this case, we will hit the timeout on waiting for more data and notice that the shutdown
// flag is set (this indicates that the command substitution is done); in this case we will read
// until we get EAGAIN and then give up.
2019-02-01 09:58:06 +00:00
// Construct a promise that can go into our background thread.
auto promise = std::make_shared<std::promise<void>>();
// Get the future associated with our promise.
// Note this should only ever be called once.
fillthread_waiter_ = promise->get_future();
// 100 msec poll rate. Note that in most cases, the write end of the pipe will be closed so
// select() will return; the polling is important only for weird cases like a background process
// launched in a command substitution.
constexpr uint64_t usec_per_msec = 1000;
uint64_t poll_usec = 100 * usec_per_msec;
// Run our function to read until the receiver is closed.
// It's OK to capture 'this' by value because 'this' waits for the promise in its dtor.
fd_monitor_item_t item;
item.fd = std::move(fd);
item.timeout_usec = poll_usec;
item.callback = [this, promise](autoclose_fd_t &fd, bool timed_out) {
ASSERT_IS_BACKGROUND_THREAD();
// Only check the shutdown flag if we timed out.
// It's important that if select() indicated we were readable, that we call select() again
// allowing it to time out. Note the typical case is that the fd will be closed, in which
// case select will return immediately.
bool done = false;
if (!timed_out) {
// select() reported us as readable; read a bit.
scoped_lock locker(append_lock_);
ssize_t ret = read_once(fd.fd());
done = (ret == 0 || (ret < 0 && errno != EAGAIN));
} else if (shutdown_fillthread_) {
// Here our caller asked us to shut down; read while we keep getting data.
// This will stop when the fd is closed or if we get EAGAIN.
scoped_lock locker(append_lock_);
ssize_t ret;
do {
ret = read_once(fd.fd());
} while (ret > 0);
done = true;
}
if (done) {
fd.close();
promise->set_value();
}
};
fd_monitor().add(std::move(item));
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::complete_background_fillthread() {
ASSERT_IS_MAIN_THREAD();
assert(fillthread_running() && "Should have a fillthread");
shutdown_fillthread_ = true;
// Wait for the fillthread to fulfill its promise, and then clear the future so we know we no
// longer have one.
fillthread_waiter_.wait();
fillthread_waiter_ = {};
}
shared_ptr<io_bufferfill_t> io_bufferfill_t::create(const fd_set_t &conflicts, size_t buffer_limit,
int target) {
assert(target >= 0 && "Invalid target fd");
// Construct our pipes.
auto pipes = make_autoclose_pipes(conflicts);
if (!pipes) {
return nullptr;
}
// Our buffer will read from the read end of the pipe. This end must be non-blocking. This is
2019-02-01 09:58:06 +00:00
// because our fillthread needs to poll to decide if it should shut down, and also accept input
// from direct buffer transfers.
if (make_fd_nonblocking(pipes->read.fd())) {
2020-01-19 12:38:47 +00:00
FLOGF(warning, PIPE_ERROR);
wperror(L"fcntl");
return nullptr;
}
2019-02-01 09:58:06 +00:00
// Our fillthread gets the read end of the pipe; out_pipe gets the write end.
auto buffer = std::make_shared<io_buffer_t>(buffer_limit);
buffer->begin_filling(std::move(pipes->read));
return std::make_shared<io_bufferfill_t>(target, std::move(pipes->write), buffer);
2019-02-01 09:58:06 +00:00
}
2019-02-01 09:58:06 +00:00
std::shared_ptr<io_buffer_t> io_bufferfill_t::finish(std::shared_ptr<io_bufferfill_t> &&filler) {
// The io filler is passed in. This typically holds the only instance of the write side of the
// pipe used by the buffer's fillthread (except for that side held by other processes). Get the
// buffer out of the bufferfill and clear the shared_ptr; this will typically widow the pipe.
// Then allow the buffer to finish.
assert(filler && "Null pointer in finish");
auto buffer = filler->buffer();
filler.reset();
buffer->complete_background_fillthread();
return buffer;
}
io_buffer_t::~io_buffer_t() {
assert(!fillthread_running() && "io_buffer_t destroyed with outstanding fillthread");
2019-02-01 09:58:06 +00:00
}
void io_chain_t::remove(const shared_ptr<const io_data_t> &element) {
// See if you can guess why std::find doesn't work here.
for (auto iter = this->begin(); iter != this->end(); ++iter) {
if (*iter == element) {
this->erase(iter);
break;
}
}
}
void io_chain_t::push_back(io_data_ref_t element) {
// Ensure we never push back NULL.
2019-02-01 02:49:52 +00:00
assert(element.get() != nullptr);
std::vector<io_data_ref_t>::push_back(std::move(element));
}
void io_chain_t::append(const io_chain_t &chain) {
assert(&chain != this && "Cannot append self to self");
this->insert(this->end(), chain.begin(), chain.end());
}
bool io_chain_t::append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd) {
for (const auto &spec : specs) {
switch (spec.mode) {
case redirection_mode_t::fd: {
if (spec.is_close()) {
this->push_back(make_unique<io_close_t>(spec.fd));
} else {
auto target_fd = spec.get_target_as_fd();
assert(target_fd.has_value() &&
"fd redirection should have been validated already");
this->push_back(make_unique<io_fd_t>(spec.fd, *target_fd));
}
break;
}
default: {
// We have a path-based redireciton. Resolve it to a file.
// Mark it as CLO_EXEC because we don't want it to be open in any child.
wcstring path = path_apply_working_directory(spec.target, pwd);
int oflags = spec.oflags();
autoclose_fd_t file{wopen_cloexec(path, oflags, OPEN_MASK)};
if (!file.valid()) {
if ((oflags & O_EXCL) && (errno == EEXIST)) {
2020-01-19 12:38:47 +00:00
FLOGF(warning, NOCLOB_ERROR, spec.target.c_str());
} else {
2020-01-19 12:38:47 +00:00
FLOGF(warning, FILE_ERROR, spec.target.c_str());
if (should_flog(warning)) wperror(L"open");
}
return false;
}
this->push_back(std::make_shared<io_file_t>(spec.fd, std::move(file)));
break;
}
}
}
return true;
}
2019-12-11 01:05:17 +00:00
void io_chain_t::print() const {
if (this->empty()) {
std::fwprintf(stderr, L"Empty chain %p\n", this);
return;
}
std::fwprintf(stderr, L"Chain %p (%ld items):\n", this, static_cast<long>(this->size()));
2019-12-11 01:05:17 +00:00
for (size_t i = 0; i < this->size(); i++) {
const auto &io = this->at(i);
if (io == nullptr) {
std::fwprintf(stderr, L"\t(null)\n");
2019-12-11 01:21:03 +00:00
} else {
std::fwprintf(stderr, L"\t%lu: fd:%d, ", static_cast<unsigned long>(i), io->fd);
io->print();
}
}
}
fd_set_t io_chain_t::fd_set() const {
fd_set_t result;
for (const auto &io : *this) {
result.add(io->fd);
}
return result;
}
autoclose_fd_t move_fd_to_unused(autoclose_fd_t fd, const fd_set_t &fdset) {
if (!fd.valid() || !fdset.contains(fd.fd())) {
2016-10-31 04:18:59 +00:00
return fd;
}
2016-10-31 04:18:59 +00:00
// We have fd >= 0, and it's a conflict. dup it and recurse. Note that we recurse before
// anything is closed; this forces the kernel to give us a new one (or report fd exhaustion).
int tmp_fd;
do {
tmp_fd = dup(fd.fd());
2016-10-31 04:18:59 +00:00
} while (tmp_fd < 0 && errno == EINTR);
assert(tmp_fd != fd.fd());
2016-10-31 04:18:59 +00:00
if (tmp_fd < 0) {
// Likely fd exhaustion.
return autoclose_fd_t{};
}
// Ok, we have a new candidate fd. Recurse.
set_cloexec(tmp_fd);
return move_fd_to_unused(autoclose_fd_t{tmp_fd}, fdset);
}
maybe_t<autoclose_pipes_t> make_autoclose_pipes(const fd_set_t &fdset) {
int pipes[2] = {-1, -1};
if (pipe(pipes) < 0) {
2020-01-19 12:38:47 +00:00
FLOGF(warning, PIPE_ERROR);
wperror(L"pipe");
return none();
}
set_cloexec(pipes[0]);
set_cloexec(pipes[1]);
auto read = move_fd_to_unused(autoclose_fd_t{pipes[0]}, fdset);
if (!read.valid()) return none();
auto write = move_fd_to_unused(autoclose_fd_t{pipes[1]}, fdset);
if (!write.valid()) return none();
return autoclose_pipes_t(std::move(read), std::move(write));
}
shared_ptr<const io_data_t> io_chain_t::io_for_fd(int fd) const {
for (auto iter = rbegin(); iter != rend(); ++iter) {
const auto &data = *iter;
if (data->fd == fd) {
return data;
}
}
return nullptr;
}
void output_stream_t::append_narrow_buffer(const separated_buffer_t<std::string> &buffer) {
for (const auto &rhs_elem : buffer.elements()) {
buffer_.append(str2wcstring(rhs_elem.contents), rhs_elem.separation);
}
}