fish-shell/src/io.cpp

349 lines
13 KiB
C++
Raw Normal View History

// Utilities for io redirection.
#include "config.h" // IWYU pragma: keep
#include "io.h"
#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include <cstring>
#include <cwchar>
#include "common.h"
#include "exec.h"
#include "fallback.h" // IWYU pragma: keep
2019-02-01 09:58:06 +00:00
#include "iothread.h"
#include "path.h"
#include "redirection.h"
#include "wutil.h" // IWYU pragma: keep
/// File redirection error message.
#define FILE_ERROR _(L"An error occurred while redirecting file '%ls'")
#define NOCLOB_ERROR _(L"The file '%ls' already exists")
/// Base open mode to pass to calls to open.
#define OPEN_MASK 0666
io_data_t::~io_data_t() = default;
io_pipe_t::~io_pipe_t() = default;
io_fd_t::~io_fd_t() = default;
io_close_t::~io_close_t() = default;
io_file_t::~io_file_t() = default;
io_bufferfill_t::~io_bufferfill_t() = default;
void io_close_t::print() const { std::fwprintf(stderr, L"close %d\n", fd); }
2013-01-09 08:02:04 +00:00
void io_fd_t::print() const { std::fwprintf(stderr, L"FD map %d -> %d\n", source_fd, fd); }
2013-01-15 07:37:33 +00:00
void io_file_t::print() const { std::fwprintf(stderr, L"file (%d)\n", file_fd_.fd()); }
2013-01-15 08:18:03 +00:00
void io_pipe_t::print() const {
std::fwprintf(stderr, L"pipe {%d} (input: %s)\n", source_fd, is_input_ ? "yes" : "no");
}
void io_bufferfill_t::print() const { std::fwprintf(stderr, L"bufferfill {%d}\n", write_fd_.fd()); }
void io_buffer_t::append_from_stream(const output_stream_t &stream) {
const separated_buffer_t<wcstring> &input = stream.buffer();
if (input.elements().empty() && !input.discarded()) return;
2019-02-01 09:58:06 +00:00
scoped_lock locker(append_lock_);
if (buffer_.discarded()) return;
if (input.discarded()) {
buffer_.set_discard();
return;
}
buffer_.append_wide_buffer(input);
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::run_background_fillthread(autoclose_fd_t readfd) {
// Here we are running the background fillthread, executing in a background thread.
// Our plan is:
// 1. poll via select() until the fd is readable.
// 2. Acquire the append lock.
// 3. read until EAGAIN (would block), appending
// 4. release the lock
// The purpose of holding the lock around the read calls is to ensure that data from background
// processes isn't weirdly interspersed with data directly transferred (from a builtin to a
// buffer).
2019-02-01 09:58:06 +00:00
const int fd = readfd.fd();
// 100 msec poll rate. Note that in most cases, the write end of the pipe will be closed so
// select() will return; the polling is important only for weird cases like a background process
// launched in a command substitution.
const long poll_timeout_usec = 100000;
struct timeval tv = {};
tv.tv_usec = poll_timeout_usec;
bool shutdown = false;
while (!shutdown) {
bool readable = false;
// Poll if our fd is readable.
// Do this even if the shutdown flag is set. It's important we wait for the fd at least
// once. For short-lived processes, it's possible for the process to execute, produce output
// (fits in the pipe buffer) and be reaped before we are even scheduled. So always wait at
// least once on the fd. Note that doesn't mean we will wait for the full poll duration;
// typically what will happen is our pipe will be widowed and so this will return quickly.
// It's only for weird cases (e.g. a background process launched inside a command
// substitution) that we'll wait out the entire poll time.
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
int ret = select(fd + 1, &fds, nullptr, nullptr, &tv);
// select(2) is allowed to (and does) update `tv` to indicate how much time was left, so we
// need to restore the desired value each time.
tv.tv_usec = poll_timeout_usec;
2019-02-01 09:58:06 +00:00
readable = ret > 0;
if (ret < 0 && errno != EINTR) {
// Surprising error.
wperror(L"select");
return;
}
// Only check the shutdown flag if we timed out.
// It's important that if select() indicated we were readable, that we call select() again
// allowing it to time out. Note the typical case is that the fd will be closed, in which
// case select will return immediately.
if (!readable) {
shutdown = this->shutdown_fillthread_;
2019-02-01 09:58:06 +00:00
}
if (readable || shutdown) {
// Now either our fd is readable, or we have set the shutdown flag.
// Either way acquire the lock and read until we reach EOF, or EAGAIN / EINTR.
scoped_lock locker(append_lock_);
ssize_t ret;
do {
errno = 0;
char buff[4096];
2019-02-01 09:58:06 +00:00
ret = read(fd, buff, sizeof buff);
if (ret > 0) {
buffer_.append(&buff[0], &buff[ret]);
} else if (ret == 0) {
shutdown = true;
} else if (ret == -1 && errno == 0) {
// No specific error. We assume we just return,
// since that's what we do in read_blocked.
return;
2019-02-01 09:58:06 +00:00
} else if (errno != EINTR && errno != EAGAIN) {
wperror(L"read");
return;
}
} while (ret > 0);
}
}
2019-02-01 09:58:06 +00:00
assert(shutdown && "Should only exit loop if shutdown flag is set");
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::begin_background_fillthread(autoclose_fd_t fd) {
ASSERT_IS_MAIN_THREAD();
assert(!fillthread_running() && "Already have a fillthread");
2019-02-01 09:58:06 +00:00
// We want our background thread to own the fd but it's not easy to move into a std::function.
// Use a shared_ptr.
auto fdref = move_to_sharedptr(std::move(fd));
2019-02-01 09:58:06 +00:00
// Construct a promise that can go into our background thread.
auto promise = std::make_shared<std::promise<void>>();
// Get the future associated with our promise.
// Note this should only ever be called once.
fillthread_waiter_ = promise->get_future();
// Run our function to read until the receiver is closed.
// It's OK to capture 'this' by value because 'this' owns the background thread and waits for it
2019-02-01 09:58:06 +00:00
// before dtor.
iothread_perform_cantwait([this, promise, fdref]() {
2019-02-01 09:58:06 +00:00
this->run_background_fillthread(std::move(*fdref));
promise->set_value();
});
}
2019-02-01 09:58:06 +00:00
void io_buffer_t::complete_background_fillthread() {
ASSERT_IS_MAIN_THREAD();
assert(fillthread_running() && "Should have a fillthread");
shutdown_fillthread_ = true;
// Wait for the fillthread to fulfill its promise, and then clear the future so we know we no
// longer have one.
fillthread_waiter_.wait();
fillthread_waiter_ = {};
}
shared_ptr<io_bufferfill_t> io_bufferfill_t::create(const fd_set_t &conflicts,
size_t buffer_limit) {
// Construct our pipes.
auto pipes = make_autoclose_pipes(conflicts);
if (!pipes) {
return nullptr;
}
// Our buffer will read from the read end of the pipe. This end must be non-blocking. This is
2019-02-01 09:58:06 +00:00
// because our fillthread needs to poll to decide if it should shut down, and also accept input
// from direct buffer transfers.
if (make_fd_nonblocking(pipes->read.fd())) {
2020-01-19 12:38:47 +00:00
FLOGF(warning, PIPE_ERROR);
wperror(L"fcntl");
return nullptr;
}
2019-02-01 09:58:06 +00:00
// Our fillthread gets the read end of the pipe; out_pipe gets the write end.
auto buffer = std::make_shared<io_buffer_t>(buffer_limit);
buffer->begin_background_fillthread(std::move(pipes->read));
return std::make_shared<io_bufferfill_t>(std::move(pipes->write), buffer);
2019-02-01 09:58:06 +00:00
}
2019-02-01 09:58:06 +00:00
std::shared_ptr<io_buffer_t> io_bufferfill_t::finish(std::shared_ptr<io_bufferfill_t> &&filler) {
// The io filler is passed in. This typically holds the only instance of the write side of the
// pipe used by the buffer's fillthread (except for that side held by other processes). Get the
// buffer out of the bufferfill and clear the shared_ptr; this will typically widow the pipe.
// Then allow the buffer to finish.
assert(filler && "Null pointer in finish");
auto buffer = filler->buffer();
filler.reset();
buffer->complete_background_fillthread();
return buffer;
}
io_buffer_t::~io_buffer_t() {
assert(!fillthread_running() && "io_buffer_t destroyed with outstanding fillthread");
2019-02-01 09:58:06 +00:00
}
void io_chain_t::remove(const shared_ptr<const io_data_t> &element) {
// See if you can guess why std::find doesn't work here.
for (io_chain_t::iterator iter = this->begin(); iter != this->end(); ++iter) {
if (*iter == element) {
this->erase(iter);
break;
}
}
}
void io_chain_t::push_back(io_data_ref_t element) {
// Ensure we never push back NULL.
2019-02-01 02:49:52 +00:00
assert(element.get() != nullptr);
std::vector<io_data_ref_t>::push_back(std::move(element));
}
void io_chain_t::append(const io_chain_t &chain) {
assert(&chain != this && "Cannot append self to self");
this->insert(this->end(), chain.begin(), chain.end());
}
bool io_chain_t::append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd) {
for (const auto &spec : specs) {
switch (spec.mode) {
case redirection_mode_t::fd: {
if (spec.is_close()) {
this->push_back(make_unique<io_close_t>(spec.fd));
} else {
auto target_fd = spec.get_target_as_fd();
assert(target_fd.has_value() &&
"fd redirection should have been validated already");
this->push_back(make_unique<io_fd_t>(spec.fd, *target_fd));
}
break;
}
default: {
// We have a path-based redireciton. Resolve it to a file.
// Mark it as CLO_EXEC because we don't want it to be open in any child.
wcstring path = path_apply_working_directory(spec.target, pwd);
int oflags = spec.oflags();
autoclose_fd_t file{wopen_cloexec(path, oflags, OPEN_MASK)};
if (!file.valid()) {
if ((oflags & O_EXCL) && (errno == EEXIST)) {
2020-01-19 12:38:47 +00:00
FLOGF(warning, NOCLOB_ERROR, spec.target.c_str());
} else {
2020-01-19 12:38:47 +00:00
FLOGF(warning, FILE_ERROR, spec.target.c_str());
if (should_flog(warning)) wperror(L"open");
}
return false;
}
this->push_back(std::make_shared<io_file_t>(spec.fd, std::move(file)));
break;
}
}
}
return true;
}
2019-12-11 01:05:17 +00:00
void io_chain_t::print() const {
if (this->empty()) {
std::fwprintf(stderr, L"Empty chain %p\n", this);
return;
}
2019-12-11 01:05:17 +00:00
std::fwprintf(stderr, L"Chain %p (%ld items):\n", this, (long)this->size());
for (size_t i = 0; i < this->size(); i++) {
const auto &io = this->at(i);
if (io == nullptr) {
std::fwprintf(stderr, L"\t(null)\n");
2019-12-11 01:21:03 +00:00
} else {
std::fwprintf(stderr, L"\t%lu: fd:%d, ", (unsigned long)i, io->fd);
io->print();
}
}
}
fd_set_t io_chain_t::fd_set() const {
fd_set_t result;
for (const auto &io : *this) {
result.add(io->fd);
}
return result;
}
autoclose_fd_t move_fd_to_unused(autoclose_fd_t fd, const fd_set_t &fdset) {
if (!fd.valid() || !fdset.contains(fd.fd())) {
2016-10-31 04:18:59 +00:00
return fd;
}
2016-10-31 04:18:59 +00:00
// We have fd >= 0, and it's a conflict. dup it and recurse. Note that we recurse before
// anything is closed; this forces the kernel to give us a new one (or report fd exhaustion).
int tmp_fd;
do {
tmp_fd = dup(fd.fd());
2016-10-31 04:18:59 +00:00
} while (tmp_fd < 0 && errno == EINTR);
assert(tmp_fd != fd.fd());
2016-10-31 04:18:59 +00:00
if (tmp_fd < 0) {
// Likely fd exhaustion.
return autoclose_fd_t{};
}
// Ok, we have a new candidate fd. Recurse.
set_cloexec(tmp_fd);
return move_fd_to_unused(autoclose_fd_t{tmp_fd}, fdset);
}
maybe_t<autoclose_pipes_t> make_autoclose_pipes(const fd_set_t &fdset) {
int pipes[2] = {-1, -1};
if (pipe(pipes) < 0) {
2020-01-19 12:38:47 +00:00
FLOGF(warning, PIPE_ERROR);
wperror(L"pipe");
return none();
}
set_cloexec(pipes[0]);
set_cloexec(pipes[1]);
auto read = move_fd_to_unused(autoclose_fd_t{pipes[0]}, fdset);
if (!read.valid()) return none();
auto write = move_fd_to_unused(autoclose_fd_t{pipes[1]}, fdset);
if (!write.valid()) return none();
return autoclose_pipes_t(std::move(read), std::move(write));
}
shared_ptr<const io_data_t> io_chain_t::io_for_fd(int fd) const {
for (auto iter = rbegin(); iter != rend(); ++iter) {
const auto &data = *iter;
if (data->fd == fd) {
return data;
}
}
return nullptr;
}