dioxus/packages/core/src/diff.rs
2021-06-16 11:19:37 -04:00

1096 lines
43 KiB
Rust

//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
//!
//! Notice:
//! ------
//!
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and modified to support Components,
//! Fragments, Suspense, and additional batching operations.
//!
//! Implementation Details:
//! -----------------------
//!
//! Diff the `old` node with the `new` node. Emits instructions to modify a
//! physical DOM node that reflects `old` into something that reflects `new`.
//!
//! Upon entry to this function, the physical DOM node must be on the top of the
//! change list stack:
//!
//! [... node]
//!
//! The change list stack is in the same state when this function exits.
//!
//! Further Reading and Thoughts
//! ----------------------------
//!
//! There are more ways of increasing diff performance here that are currently not implemented.
//! More info on how to improve this diffing algorithm:
//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
use crate::{arena::ScopeArena, innerlude::*};
use fxhash::{FxHashMap, FxHashSet};
use std::{
cmp::Ordering,
rc::{Rc, Weak},
sync::atomic::AtomicU32,
};
/// The DiffState is a cursor internal to the VirtualDOM's diffing algorithm that allows persistence of state while
/// diffing trees of components. This means we can "re-enter" a subtree of a component by queuing a "NeedToDiff" event.
///
/// By re-entering via NodeDiff, we can connect disparate edits together into a single EditList. This batching of edits
/// leads to very fast re-renders (all done in a single animation frame).
///
/// It also means diffing two trees is only ever complex as diffing a single smaller tree, and then re-entering at a
/// different cursor position.
///
/// The order of these re-entrances is stored in the DiffState itself. The DiffState comes pre-loaded with a set of components
/// that were modified by the eventtrigger. This prevents doubly evaluating components if they were both updated via
/// subscriptions and props changes.
pub struct DiffMachine<'a> {
pub create_diffs: bool,
pub cur_idx: ScopeIdx,
pub change_list: EditMachine<'a>,
pub diffed: FxHashSet<ScopeIdx>,
pub components: ScopeArena,
pub event_queue: EventQueue,
pub seen_nodes: FxHashSet<ScopeIdx>,
}
static COUNTER: AtomicU32 = AtomicU32::new(1);
fn next_id() -> u32 {
COUNTER.fetch_add(1, std::sync::atomic::Ordering::Relaxed)
}
impl<'a> DiffMachine<'a> {
pub fn new(components: ScopeArena, cur_idx: ScopeIdx, event_queue: EventQueue) -> Self {
Self {
components,
cur_idx,
event_queue,
create_diffs: true,
change_list: EditMachine::new(),
diffed: FxHashSet::default(),
seen_nodes: FxHashSet::default(),
}
}
pub fn consume(self) -> EditList<'a> {
self.change_list.emitter
}
pub fn diff_node(&mut self, old_node: &VNode<'a>, new_node: &VNode<'a>) {
// pub fn diff_node(&mut self, old: &VNode<'a>, new: &VNode<'a>) {
/*
For each valid case, we "commit traversal", meaning we save this current position in the tree.
Then, we diff and queue an edit event (via chagelist). s single trees - when components show up, we save that traversal and then re-enter later.
When re-entering, we reuse the EditList in DiffState
*/
match (old_node, new_node) {
(VNode::Text(old_text), VNode::Text(new_text)) => {
if old_text != new_text {
self.change_list.commit_traversal();
self.change_list.set_text(new_text);
}
}
(VNode::Text(_), VNode::Element(_)) => {
self.change_list.commit_traversal();
self.create(new_node);
self.change_list.replace_with();
}
(VNode::Element(_), VNode::Text(_)) => {
self.change_list.commit_traversal();
self.create(new_node);
self.change_list.replace_with();
}
(VNode::Element(eold), VNode::Element(enew)) => {
// If the element type is completely different, the element needs to be re-rendered completely
if enew.tag_name != eold.tag_name || enew.namespace != eold.namespace {
self.change_list.commit_traversal();
self.change_list.replace_with();
return;
}
self.diff_listeners(eold.listeners, enew.listeners);
self.diff_attr(eold.attributes, enew.attributes, enew.namespace.is_some());
self.diff_children(eold.children, enew.children);
}
(VNode::Component(cold), VNode::Component(cnew)) => {
// Make sure we're dealing with the same component (by function pointer)
if cold.user_fc == cnew.user_fc {
// Make sure the new component vnode is referencing the right scope id
let scope_id = cold.ass_scope.borrow().clone();
*cnew.ass_scope.borrow_mut() = scope_id;
// make sure the component's caller function is up to date
self.components
.with_scope(scope_id.unwrap(), |scope| {
scope.caller = Rc::downgrade(&cnew.caller)
})
.unwrap();
// React doesn't automatically memoize, but we do.
// The cost is low enough to make it worth checking
let should_render = match cold.comparator {
Some(comparator) => comparator(cnew),
None => true,
};
if should_render {
self.change_list.commit_traversal();
self.components
.with_scope(scope_id.unwrap(), |f| {
f.run_scope().unwrap();
})
.unwrap();
// diff_machine.change_list.load_known_root(root_id);
// run the scope
//
} else {
// Component has memoized itself and doesn't need to be re-rendered.
// We still need to make sure the child's props are up-to-date.
// Don't commit traversal
}
} else {
// A new component has shown up! We need to destroy the old node
// Wipe the old one and plant the new one
self.change_list.commit_traversal();
self.create(new_node);
self.change_list.replace_with();
// Now we need to remove the old scope and all of its descendents
let old_scope = cold.ass_scope.borrow().as_ref().unwrap().clone();
self.destroy_scopes(old_scope);
}
}
// todo: knock out any listeners
(_, VNode::Component(_)) => {
self.change_list.commit_traversal();
self.create(new_node);
self.change_list.replace_with();
}
// A component is being torn down in favor of a non-component node
(VNode::Component(_old), _) => {
self.change_list.commit_traversal();
self.create(new_node);
self.change_list.replace_with();
// Destroy the original scope and any of its children
self.destroy_scopes(_old.ass_scope.borrow().unwrap());
}
// Anything suspended is not enabled ATM
(VNode::Suspended, _) | (_, VNode::Suspended) => {
todo!("Suspended components not currently available")
}
// Fragments are special
// we actually have to remove a bunch of nodes
(VNode::Fragment(_), _) => {
todo!("Fragments not currently supported in diffing")
}
(VNode::Fragment(_), VNode::Fragment(_)) => {
todo!("Fragments not currently supported in diffing")
}
(old_n, VNode::Fragment(_)) => {
match old_n {
VNode::Element(_) => todo!(),
VNode::Text(_) => todo!(),
VNode::Fragment(_) => todo!(),
VNode::Suspended => todo!(),
VNode::Component(_) => todo!(),
}
todo!("Fragments not currently supported in diffing")
}
}
}
// Emit instructions to create the given virtual node.
//
// The change list stack may have any shape upon entering this function:
//
// [...]
//
// When this function returns, the new node is on top of the change list stack:
//
// [... node]
fn create(&mut self, node: &VNode<'a>) {
debug_assert!(self.change_list.traversal_is_committed());
match node {
VNode::Text(text) => {
self.change_list.create_text_node(text);
}
VNode::Element(&VElement {
key,
tag_name,
listeners,
attributes,
children,
namespace,
}) => {
// log::info!("Creating {:#?}", node);
if let Some(namespace) = namespace {
self.change_list.create_element_ns(tag_name, namespace);
} else {
self.change_list.create_element(tag_name);
}
listeners.iter().enumerate().for_each(|(_id, listener)| {
self.change_list
.new_event_listener(listener.event, listener.scope, listener.id)
});
for attr in attributes {
self.change_list
.set_attribute(&attr.name, &attr.value, namespace.is_some());
}
// Fast path: if there is a single text child, it is faster to
// create-and-append the text node all at once via setting the
// parent's `textContent` in a single change list instruction than
// to emit three instructions to (1) create a text node, (2) set its
// text content, and finally (3) append the text node to this
// parent.
if children.len() == 1 {
if let VNode::Text(text) = children[0] {
self.change_list.set_text(text);
return;
}
}
for child in children {
self.create(child);
if let VNode::Fragment(_) = child {
// do nothing
// fragments append themselves
} else {
self.change_list.append_child();
}
}
}
VNode::Component(component) => {
self.change_list
.create_text_node("placeholder for vcomponent");
let root_id = next_id();
self.change_list.save_known_root(root_id);
log::debug!("Mounting a new component");
let caller: Weak<OpaqueComponent> = Rc::downgrade(&component.caller);
// We're modifying the component arena while holding onto references into the assoiated bump arenas of its children
// those references are stable, even if the component arena moves around in memory, thanks to the bump arenas.
// However, there is no way to convey this to rust, so we need to use unsafe to pierce through the lifetime.
let parent_idx = self.cur_idx;
// Insert a new scope into our component list
let idx = self
.components
.with(|components| {
components.insert_with(|new_idx| {
let parent_scope = self.components.try_get(parent_idx).unwrap();
let height = parent_scope.height + 1;
Scope::new(
caller,
new_idx,
Some(parent_idx),
height,
self.event_queue.new_channel(height, new_idx),
self.components.clone(),
component.children,
)
})
})
.unwrap();
{
let cur_component = self.components.try_get_mut(idx).unwrap();
let mut ch = cur_component.descendents.borrow_mut();
ch.insert(idx);
std::mem::drop(ch);
}
// yaaaaay lifetimes out of thin air
// really tho, we're merging the frame lifetimes together
let inner: &'a mut _ = unsafe { &mut *self.components.0.borrow().arena.get() };
let new_component = inner.get_mut(idx).unwrap();
// Actually initialize the caller's slot with the right address
*component.ass_scope.borrow_mut() = Some(idx);
// Run the scope for one iteration to initialize it
new_component.run_scope().unwrap();
// And then run the diff algorithm
self.diff_node(new_component.old_frame(), new_component.next_frame());
// Finally, insert this node as a seen node.
self.seen_nodes.insert(idx);
}
// we go the the "known root" but only operate on a sibling basis
VNode::Fragment(frag) => {
// create the children directly in the space
for child in frag.children {
self.create(child);
self.change_list.append_child();
}
}
VNode::Suspended => {
todo!("Creation of VNode::Suspended not yet supported")
}
}
}
/// Destroy a scope and all of its descendents.
///
/// Calling this will run the destuctors on all hooks in the tree.
/// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
fn destroy_scopes(&mut self, old_scope: ScopeIdx) {
let mut nodes_to_delete = vec![old_scope];
let mut scopes_to_explore = vec![old_scope];
// explore the scope tree breadth first
while let Some(scope_id) = scopes_to_explore.pop() {
// If we're planning on deleting this node, then we don't need to both rendering it
self.seen_nodes.insert(scope_id);
let scope = self.components.try_get(scope_id).unwrap();
for child in scope.descendents.borrow().iter() {
// Add this node to be explored
scopes_to_explore.push(child.clone());
// Also add it for deletion
nodes_to_delete.push(child.clone());
}
}
// Delete all scopes that we found as part of this subtree
for node in nodes_to_delete {
log::debug!("Removing scope {:#?}", node);
let _scope = self.components.try_remove(node).unwrap();
// do anything we need to do to delete the scope
// I think we need to run the destructors on the hooks
// TODO
}
}
// Diff event listeners between `old` and `new`.
//
// The listeners' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_listeners(&mut self, old: &[Listener<'_>], new: &[Listener<'_>]) {
if !old.is_empty() || !new.is_empty() {
self.change_list.commit_traversal();
}
'outer1: for (_l_idx, new_l) in new.iter().enumerate() {
// go through each new listener
// find its corresponding partner in the old list
// if any characteristics changed, remove and then re-add
// if nothing changed, then just move on
let event_type = new_l.event;
for old_l in old {
if new_l.event == old_l.event {
if new_l.id != old_l.id {
self.change_list.remove_event_listener(event_type);
self.change_list
.update_event_listener(event_type, new_l.scope, new_l.id)
}
continue 'outer1;
}
}
self.change_list
.new_event_listener(event_type, new_l.scope, new_l.id);
}
'outer2: for old_l in old {
for new_l in new {
if new_l.event == old_l.event {
continue 'outer2;
}
}
self.change_list.remove_event_listener(old_l.event);
}
}
// Diff a node's attributes.
//
// The attributes' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_attr(
&mut self,
old: &'a [Attribute<'a>],
new: &'a [Attribute<'a>],
is_namespaced: bool,
) {
// Do O(n^2) passes to add/update and remove attributes, since
// there are almost always very few attributes.
//
// The "fast" path is when the list of attributes name is identical and in the same order
// With the Rsx and Html macros, this will almost always be the case
'outer: for new_attr in new {
if new_attr.is_volatile() {
self.change_list.commit_traversal();
self.change_list
.set_attribute(new_attr.name, new_attr.value, is_namespaced);
} else {
for old_attr in old {
if old_attr.name == new_attr.name {
if old_attr.value != new_attr.value {
self.change_list.commit_traversal();
self.change_list.set_attribute(
new_attr.name,
new_attr.value,
is_namespaced,
);
}
continue 'outer;
} else {
// names are different, a varying order of attributes has arrived
}
}
self.change_list.commit_traversal();
self.change_list
.set_attribute(new_attr.name, new_attr.value, is_namespaced);
}
}
'outer2: for old_attr in old {
for new_attr in new {
if old_attr.name == new_attr.name {
continue 'outer2;
}
}
self.change_list.commit_traversal();
self.change_list.remove_attribute(old_attr.name);
}
}
// Diff the given set of old and new children.
//
// The parent must be on top of the change list stack when this function is
// entered:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) {
if new.is_empty() {
if !old.is_empty() {
self.change_list.commit_traversal();
self.remove_all_children(old);
}
return;
}
if new.len() == 1 {
match (old.first(), &new[0]) {
(Some(&VNode::Text(old_text)), &VNode::Text(new_text)) if old_text == new_text => {
// Don't take this fast path...
}
(_, &VNode::Text(text)) => {
self.change_list.commit_traversal();
self.change_list.set_text(text);
return;
}
// todo: any more optimizations
(_, _) => {}
}
}
if old.is_empty() {
if !new.is_empty() {
self.change_list.commit_traversal();
self.create_and_append_children(new);
}
return;
}
let new_is_keyed = new[0].key().is_some();
let old_is_keyed = old[0].key().is_some();
debug_assert!(
new.iter().all(|n| n.key().is_some() == new_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
debug_assert!(
old.iter().all(|o| o.key().is_some() == old_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
if new_is_keyed && old_is_keyed {
let t = self.change_list.next_temporary();
self.diff_keyed_children(old, new);
self.change_list.set_next_temporary(t);
} else {
self.diff_non_keyed_children(old, new);
}
}
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// When entering this function, the parent must be on top of the change list
// stack:
//
// [... parent]
//
// Upon exiting, the change list stack is in the same state.
fn diff_keyed_children(&mut self, old: &[VNode<'a>], new: &[VNode<'a>]) {
// if cfg!(debug_assertions) {
// let mut keys = fxhash::FxHashSet::default();
// let mut assert_unique_keys = |children: &[VNode]| {
// keys.clear();
// for child in children {
// let key = child.key();
// debug_assert!(
// key.is_some(),
// "if any sibling is keyed, all siblings must be keyed"
// );
// keys.insert(key);
// }
// debug_assert_eq!(
// children.len(),
// keys.len(),
// "keyed siblings must each have a unique key"
// );
// };
// assert_unique_keys(old);
// assert_unique_keys(new);
// }
// First up, we diff all the nodes with the same key at the beginning of the
// children.
//
// `shared_prefix_count` is the count of how many nodes at the start of
// `new` and `old` share the same keys.
let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
// Next, we find out how many of the nodes at the end of the children have
// the same key. We do _not_ diff them yet, since we want to emit the change
// list instructions such that they can be applied in a single pass over the
// DOM. Instead, we just save this information for later.
//
// `shared_suffix_count` is the count of how many nodes at the end of `new`
// and `old` share the same keys.
let shared_suffix_count = old[shared_prefix_count..]
.iter()
.rev()
.zip(new[shared_prefix_count..].iter().rev())
.take_while(|&(old, new)| old.key() == new.key())
.count();
let old_shared_suffix_start = old.len() - shared_suffix_count;
let new_shared_suffix_start = new.len() - shared_suffix_count;
// Ok, we now hopefully have a smaller range of children in the middle
// within which to re-order nodes with the same keys, remove old nodes with
// now-unused keys, and create new nodes with fresh keys.
self.diff_keyed_middle(
&old[shared_prefix_count..old_shared_suffix_start],
&new[shared_prefix_count..new_shared_suffix_start],
shared_prefix_count,
shared_suffix_count,
old_shared_suffix_start,
);
// Finally, diff the nodes at the end of `old` and `new` that share keys.
let old_suffix = &old[old_shared_suffix_start..];
let new_suffix = &new[new_shared_suffix_start..];
debug_assert_eq!(old_suffix.len(), new_suffix.len());
if !old_suffix.is_empty() {
self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
}
}
// Diff the prefix of children in `new` and `old` that share the same keys in
// the same order.
//
// Upon entry of this function, the change list stack must be:
//
// [... parent]
//
// Upon exit, the change list stack is the same.
fn diff_keyed_prefix(&mut self, old: &[VNode<'a>], new: &[VNode<'a>]) -> KeyedPrefixResult {
self.change_list.go_down();
let mut shared_prefix_count = 0;
for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() {
if old.key() != new.key() {
break;
}
self.change_list.go_to_sibling(i);
self.diff_node(old, new);
shared_prefix_count += 1;
}
// If that was all of the old children, then create and append the remaining
// new children and we're finished.
if shared_prefix_count == old.len() {
self.change_list.go_up();
self.change_list.commit_traversal();
self.create_and_append_children(&new[shared_prefix_count..]);
return KeyedPrefixResult::Finished;
}
// And if that was all of the new children, then remove all of the remaining
// old children and we're finished.
if shared_prefix_count == new.len() {
self.change_list.go_to_sibling(shared_prefix_count);
self.change_list.commit_traversal();
self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
return KeyedPrefixResult::Finished;
}
self.change_list.go_up();
KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
}
// The most-general, expensive code path for keyed children diffing.
//
// We find the longest subsequence within `old` of children that are relatively
// ordered the same way in `new` (via finding a longest-increasing-subsequence
// of the old child's index within `new`). The children that are elements of
// this subsequence will remain in place, minimizing the number of DOM moves we
// will have to do.
//
// Upon entry to this function, the change list stack must be:
//
// [... parent]
//
// Upon exit from this function, it will be restored to that same state.
fn diff_keyed_middle(
&mut self,
old: &[VNode<'a>],
mut new: &[VNode<'a>],
shared_prefix_count: usize,
shared_suffix_count: usize,
old_shared_suffix_start: usize,
) {
// Should have already diffed the shared-key prefixes and suffixes.
debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
// The algorithm below relies upon using `u32::MAX` as a sentinel
// value, so if we have that many new nodes, it won't work. This
// check is a bit academic (hence only enabled in debug), since
// wasm32 doesn't have enough address space to hold that many nodes
// in memory.
debug_assert!(new.len() < u32::MAX as usize);
// Map from each `old` node's key to its index within `old`.
let mut old_key_to_old_index = FxHashMap::default();
old_key_to_old_index.reserve(old.len());
old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i)));
// The set of shared keys between `new` and `old`.
let mut shared_keys = FxHashSet::default();
// Map from each index in `new` to the index of the node in `old` that
// has the same key.
let mut new_index_to_old_index = Vec::with_capacity(new.len());
new_index_to_old_index.extend(new.iter().map(|n| {
let key = n.key();
if let Some(&i) = old_key_to_old_index.get(&key) {
shared_keys.insert(key);
i
} else {
u32::MAX as usize
}
}));
// If none of the old keys are reused by the new children, then we
// remove all the remaining old children and create the new children
// afresh.
if shared_suffix_count == 0 && shared_keys.is_empty() {
if shared_prefix_count == 0 {
self.change_list.commit_traversal();
self.remove_all_children(old);
} else {
self.change_list.go_down_to_child(shared_prefix_count);
self.change_list.commit_traversal();
self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
}
self.create_and_append_children(new);
return;
}
// Save each of the old children whose keys are reused in the new
// children.
let mut old_index_to_temp = vec![u32::MAX; old.len()];
let mut start = 0;
loop {
let end = (start..old.len())
.find(|&i| {
let key = old[i].key();
!shared_keys.contains(&key)
})
.unwrap_or(old.len());
if end - start > 0 {
self.change_list.commit_traversal();
let mut t = self.change_list.save_children_to_temporaries(
shared_prefix_count + start,
shared_prefix_count + end,
);
for i in start..end {
old_index_to_temp[i] = t;
t += 1;
}
}
debug_assert!(end <= old.len());
if end == old.len() {
break;
} else {
start = end + 1;
}
}
// Remove any old children whose keys were not reused in the new
// children. Remove from the end first so that we don't mess up indices.
let mut removed_count = 0;
for (i, old_child) in old.iter().enumerate().rev() {
if !shared_keys.contains(&old_child.key()) {
// registry.remove_subtree(old_child);
// todo
self.change_list.commit_traversal();
self.change_list.remove_child(i + shared_prefix_count);
removed_count += 1;
}
}
// If there aren't any more new children, then we are done!
if new.is_empty() {
return;
}
// The longest increasing subsequence within `new_index_to_old_index`. This
// is the longest sequence on DOM nodes in `old` that are relatively ordered
// correctly within `new`. We will leave these nodes in place in the DOM,
// and only move nodes that are not part of the LIS. This results in the
// maximum number of DOM nodes left in place, AKA the minimum number of DOM
// nodes moved.
let mut new_index_is_in_lis = FxHashSet::default();
new_index_is_in_lis.reserve(new_index_to_old_index.len());
let mut predecessors = vec![0; new_index_to_old_index.len()];
let mut starts = vec![0; new_index_to_old_index.len()];
longest_increasing_subsequence::lis_with(
&new_index_to_old_index,
&mut new_index_is_in_lis,
|a, b| a < b,
&mut predecessors,
&mut starts,
);
// Now we will iterate from the end of the new children back to the
// beginning, diffing old children we are reusing and if they aren't in the
// LIS moving them to their new destination, or creating new children. Note
// that iterating in reverse order lets us use `Node.prototype.insertBefore`
// to move/insert children.
//
// But first, we ensure that we have a child on the change list stack that
// we can `insertBefore`. We handle this once before looping over `new`
// children, so that we don't have to keep checking on every loop iteration.
if shared_suffix_count > 0 {
// There is a shared suffix after these middle children. We will be
// inserting before that shared suffix, so add the first child of that
// shared suffix to the change list stack.
//
// [... parent]
self.change_list
.go_down_to_child(old_shared_suffix_start - removed_count);
// [... parent first_child_of_shared_suffix]
} else {
// There is no shared suffix coming after these middle children.
// Therefore we have to process the last child in `new` and move it to
// the end of the parent's children if it isn't already there.
let last_index = new.len() - 1;
// uhhhh why an unwrap?
let last = new.last().unwrap();
// let last = new.last().unwrap_throw();
new = &new[..new.len() - 1];
if shared_keys.contains(&last.key()) {
let old_index = new_index_to_old_index[last_index];
let temp = old_index_to_temp[old_index];
// [... parent]
self.change_list.go_down_to_temp_child(temp);
// [... parent last]
self.diff_node(&old[old_index], last);
if new_index_is_in_lis.contains(&last_index) {
// Don't move it, since it is already where it needs to be.
} else {
self.change_list.commit_traversal();
// [... parent last]
self.change_list.append_child();
// [... parent]
self.change_list.go_down_to_temp_child(temp);
// [... parent last]
}
} else {
self.change_list.commit_traversal();
// [... parent]
self.create(last);
// [... parent last]
self.change_list.append_child();
// [... parent]
self.change_list.go_down_to_reverse_child(0);
// [... parent last]
}
}
for (new_index, new_child) in new.iter().enumerate().rev() {
let old_index = new_index_to_old_index[new_index];
if old_index == u32::MAX as usize {
debug_assert!(!shared_keys.contains(&new_child.key()));
self.change_list.commit_traversal();
// [... parent successor]
self.create(new_child);
// [... parent successor new_child]
self.change_list.insert_before();
// [... parent new_child]
} else {
debug_assert!(shared_keys.contains(&new_child.key()));
let temp = old_index_to_temp[old_index];
debug_assert_ne!(temp, u32::MAX);
if new_index_is_in_lis.contains(&new_index) {
// [... parent successor]
self.change_list.go_to_temp_sibling(temp);
// [... parent new_child]
} else {
self.change_list.commit_traversal();
// [... parent successor]
self.change_list.push_temporary(temp);
// [... parent successor new_child]
self.change_list.insert_before();
// [... parent new_child]
}
self.diff_node(&old[old_index], new_child);
}
}
// [... parent child]
self.change_list.go_up();
// [... parent]
}
// Diff the suffix of keyed children that share the same keys in the same order.
//
// The parent must be on the change list stack when we enter this function:
//
// [... parent]
//
// When this function exits, the change list stack remains the same.
fn diff_keyed_suffix(
&mut self,
old: &[VNode<'a>],
new: &[VNode<'a>],
new_shared_suffix_start: usize,
) {
debug_assert_eq!(old.len(), new.len());
debug_assert!(!old.is_empty());
// [... parent]
self.change_list.go_down();
// [... parent new_child]
for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() {
self.change_list.go_to_sibling(new_shared_suffix_start + i);
self.diff_node(old_child, new_child);
}
// [... parent]
self.change_list.go_up();
}
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_non_keyed_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) {
// Handled these cases in `diff_children` before calling this function.
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
// [... parent]
self.change_list.go_down();
// [... parent child]
for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() {
// [... parent prev_child]
self.change_list.go_to_sibling(i);
// [... parent this_child]
self.diff_node(old_child, new_child);
}
match old.len().cmp(&new.len()) {
// old.len > new.len -> removing some nodes
Ordering::Greater => {
// [... parent prev_child]
self.change_list.go_to_sibling(new.len());
// [... parent first_child_to_remove]
self.change_list.commit_traversal();
// support::remove_self_and_next_siblings(state, &old[new.len()..]);
self.remove_self_and_next_siblings(&old[new.len()..]);
// [... parent]
}
// old.len < new.len -> adding some nodes
Ordering::Less => {
// [... parent last_child]
self.change_list.go_up();
// [... parent]
self.change_list.commit_traversal();
self.create_and_append_children(&new[old.len()..]);
}
// old.len == new.len -> no nodes added/removed, but πerhaps changed
Ordering::Equal => {
// [... parent child]
self.change_list.go_up();
// [... parent]
}
}
}
// ======================
// Support methods
// ======================
// Remove all of a node's children.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn remove_all_children(&mut self, old: &[VNode<'a>]) {
debug_assert!(self.change_list.traversal_is_committed());
log::debug!("REMOVING CHILDREN");
for _child in old {
// registry.remove_subtree(child);
}
// Fast way to remove all children: set the node's textContent to an empty
// string.
self.change_list.set_text("");
}
// Create the given children and append them to the parent node.
//
// The parent node must currently be on top of the change list stack:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn create_and_append_children(&mut self, new: &[VNode<'a>]) {
debug_assert!(self.change_list.traversal_is_committed());
for child in new {
self.create(child);
self.change_list.append_child();
}
}
// Remove the current child and all of its following siblings.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent child]
//
// After the function returns, the child is no longer on the change list stack:
//
// [... parent]
pub fn remove_self_and_next_siblings(&mut self, old: &[VNode<'a>]) {
debug_assert!(self.change_list.traversal_is_committed());
for child in old {
if let VNode::Component(vcomp) = child {
// self.change_list
// .create_text_node("placeholder for vcomponent");
todo!()
// let root_id = vcomp.stable_addr.as_ref().borrow().unwrap();
// self.lifecycle_events.push_back(LifeCycleEvent::Remove {
// root_id,
// stable_scope_addr: Rc::downgrade(&vcomp.ass_scope),
// })
// let id = get_id();
// *component.stable_addr.as_ref().borrow_mut() = Some(id);
// self.change_list.save_known_root(id);
// let scope = Rc::downgrade(&component.ass_scope);
// self.lifecycle_events.push_back(LifeCycleEvent::Mount {
// caller: Rc::downgrade(&component.caller),
// root_id: id,
// stable_scope_addr: scope,
// });
}
// registry.remove_subtree(child);
}
self.change_list.remove_self_and_next_siblings();
}
}
enum KeyedPrefixResult {
// Fast path: we finished diffing all the children just by looking at the
// prefix of shared keys!
Finished,
// There is more diffing work to do. Here is a count of how many children at
// the beginning of `new` and `old` we already processed.
MoreWorkToDo(usize),
}