//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children. //! //! Notice: //! ------ //! //! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and modified to support Components, //! Fragments, Suspense, and additional batching operations. //! //! Implementation Details: //! ----------------------- //! //! Diff the `old` node with the `new` node. Emits instructions to modify a //! physical DOM node that reflects `old` into something that reflects `new`. //! //! Upon entry to this function, the physical DOM node must be on the top of the //! change list stack: //! //! [... node] //! //! The change list stack is in the same state when this function exits. //! //! Further Reading and Thoughts //! ---------------------------- //! //! There are more ways of increasing diff performance here that are currently not implemented. //! More info on how to improve this diffing algorithm: //! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/ use crate::{arena::ScopeArena, innerlude::*}; use fxhash::{FxHashMap, FxHashSet}; use std::{ cmp::Ordering, rc::{Rc, Weak}, sync::atomic::AtomicU32, }; /// The DiffState is a cursor internal to the VirtualDOM's diffing algorithm that allows persistence of state while /// diffing trees of components. This means we can "re-enter" a subtree of a component by queuing a "NeedToDiff" event. /// /// By re-entering via NodeDiff, we can connect disparate edits together into a single EditList. This batching of edits /// leads to very fast re-renders (all done in a single animation frame). /// /// It also means diffing two trees is only ever complex as diffing a single smaller tree, and then re-entering at a /// different cursor position. /// /// The order of these re-entrances is stored in the DiffState itself. The DiffState comes pre-loaded with a set of components /// that were modified by the eventtrigger. This prevents doubly evaluating components if they were both updated via /// subscriptions and props changes. pub struct DiffMachine<'a> { pub create_diffs: bool, pub cur_idx: ScopeIdx, pub change_list: EditMachine<'a>, pub diffed: FxHashSet, pub components: ScopeArena, pub event_queue: EventQueue, pub seen_nodes: FxHashSet, } static COUNTER: AtomicU32 = AtomicU32::new(1); fn next_id() -> u32 { COUNTER.fetch_add(1, std::sync::atomic::Ordering::Relaxed) } impl<'a> DiffMachine<'a> { pub fn new(components: ScopeArena, cur_idx: ScopeIdx, event_queue: EventQueue) -> Self { Self { components, cur_idx, event_queue, create_diffs: true, change_list: EditMachine::new(), diffed: FxHashSet::default(), seen_nodes: FxHashSet::default(), } } pub fn consume(self) -> EditList<'a> { self.change_list.emitter } pub fn diff_node(&mut self, old_node: &VNode<'a>, new_node: &VNode<'a>) { // pub fn diff_node(&mut self, old: &VNode<'a>, new: &VNode<'a>) { /* For each valid case, we "commit traversal", meaning we save this current position in the tree. Then, we diff and queue an edit event (via chagelist). s single trees - when components show up, we save that traversal and then re-enter later. When re-entering, we reuse the EditList in DiffState */ match (old_node, new_node) { (VNode::Text(old_text), VNode::Text(new_text)) => { if old_text != new_text { self.change_list.commit_traversal(); self.change_list.set_text(new_text); } } (VNode::Text(_), VNode::Element(_)) => { self.change_list.commit_traversal(); self.create(new_node); self.change_list.replace_with(); } (VNode::Element(_), VNode::Text(_)) => { self.change_list.commit_traversal(); self.create(new_node); self.change_list.replace_with(); } (VNode::Element(eold), VNode::Element(enew)) => { // If the element type is completely different, the element needs to be re-rendered completely if enew.tag_name != eold.tag_name || enew.namespace != eold.namespace { self.change_list.commit_traversal(); self.change_list.replace_with(); return; } self.diff_listeners(eold.listeners, enew.listeners); self.diff_attr(eold.attributes, enew.attributes, enew.namespace.is_some()); self.diff_children(eold.children, enew.children); } (VNode::Component(cold), VNode::Component(cnew)) => { // Make sure we're dealing with the same component (by function pointer) if cold.user_fc == cnew.user_fc { // Make sure the new component vnode is referencing the right scope id let scope_id = cold.ass_scope.borrow().clone(); *cnew.ass_scope.borrow_mut() = scope_id; // make sure the component's caller function is up to date self.components .with_scope(scope_id.unwrap(), |scope| { scope.caller = Rc::downgrade(&cnew.caller) }) .unwrap(); // React doesn't automatically memoize, but we do. // The cost is low enough to make it worth checking let should_render = match cold.comparator { Some(comparator) => comparator(cnew), None => true, }; if should_render { self.change_list.commit_traversal(); self.components .with_scope(scope_id.unwrap(), |f| { f.run_scope().unwrap(); }) .unwrap(); // diff_machine.change_list.load_known_root(root_id); // run the scope // } else { // Component has memoized itself and doesn't need to be re-rendered. // We still need to make sure the child's props are up-to-date. // Don't commit traversal } } else { // A new component has shown up! We need to destroy the old node // Wipe the old one and plant the new one self.change_list.commit_traversal(); self.create(new_node); self.change_list.replace_with(); // Now we need to remove the old scope and all of its descendents let old_scope = cold.ass_scope.borrow().as_ref().unwrap().clone(); self.destroy_scopes(old_scope); } } // todo: knock out any listeners (_, VNode::Component(_)) => { self.change_list.commit_traversal(); self.create(new_node); self.change_list.replace_with(); } // A component is being torn down in favor of a non-component node (VNode::Component(_old), _) => { self.change_list.commit_traversal(); self.create(new_node); self.change_list.replace_with(); // Destroy the original scope and any of its children self.destroy_scopes(_old.ass_scope.borrow().unwrap()); } // Anything suspended is not enabled ATM (VNode::Suspended, _) | (_, VNode::Suspended) => { todo!("Suspended components not currently available") } // Fragments are special // we actually have to remove a bunch of nodes (VNode::Fragment(_), _) => { todo!("Fragments not currently supported in diffing") } (VNode::Fragment(_), VNode::Fragment(_)) => { todo!("Fragments not currently supported in diffing") } (old_n, VNode::Fragment(_)) => { match old_n { VNode::Element(_) => todo!(), VNode::Text(_) => todo!(), VNode::Fragment(_) => todo!(), VNode::Suspended => todo!(), VNode::Component(_) => todo!(), } todo!("Fragments not currently supported in diffing") } } } // Emit instructions to create the given virtual node. // // The change list stack may have any shape upon entering this function: // // [...] // // When this function returns, the new node is on top of the change list stack: // // [... node] fn create(&mut self, node: &VNode<'a>) { debug_assert!(self.change_list.traversal_is_committed()); match node { VNode::Text(text) => { self.change_list.create_text_node(text); } VNode::Element(&VElement { key, tag_name, listeners, attributes, children, namespace, }) => { // log::info!("Creating {:#?}", node); if let Some(namespace) = namespace { self.change_list.create_element_ns(tag_name, namespace); } else { self.change_list.create_element(tag_name); } listeners.iter().enumerate().for_each(|(_id, listener)| { self.change_list .new_event_listener(listener.event, listener.scope, listener.id) }); for attr in attributes { self.change_list .set_attribute(&attr.name, &attr.value, namespace.is_some()); } // Fast path: if there is a single text child, it is faster to // create-and-append the text node all at once via setting the // parent's `textContent` in a single change list instruction than // to emit three instructions to (1) create a text node, (2) set its // text content, and finally (3) append the text node to this // parent. if children.len() == 1 { if let VNode::Text(text) = children[0] { self.change_list.set_text(text); return; } } for child in children { self.create(child); if let VNode::Fragment(_) = child { // do nothing // fragments append themselves } else { self.change_list.append_child(); } } } VNode::Component(component) => { self.change_list .create_text_node("placeholder for vcomponent"); let root_id = next_id(); self.change_list.save_known_root(root_id); log::debug!("Mounting a new component"); let caller: Weak = Rc::downgrade(&component.caller); // We're modifying the component arena while holding onto references into the assoiated bump arenas of its children // those references are stable, even if the component arena moves around in memory, thanks to the bump arenas. // However, there is no way to convey this to rust, so we need to use unsafe to pierce through the lifetime. let parent_idx = self.cur_idx; // Insert a new scope into our component list let idx = self .components .with(|components| { components.insert_with(|new_idx| { let parent_scope = self.components.try_get(parent_idx).unwrap(); let height = parent_scope.height + 1; Scope::new( caller, new_idx, Some(parent_idx), height, self.event_queue.new_channel(height, new_idx), self.components.clone(), component.children, ) }) }) .unwrap(); { let cur_component = self.components.try_get_mut(idx).unwrap(); let mut ch = cur_component.descendents.borrow_mut(); ch.insert(idx); std::mem::drop(ch); } // yaaaaay lifetimes out of thin air // really tho, we're merging the frame lifetimes together let inner: &'a mut _ = unsafe { &mut *self.components.0.borrow().arena.get() }; let new_component = inner.get_mut(idx).unwrap(); // Actually initialize the caller's slot with the right address *component.ass_scope.borrow_mut() = Some(idx); // Run the scope for one iteration to initialize it new_component.run_scope().unwrap(); // And then run the diff algorithm self.diff_node(new_component.old_frame(), new_component.next_frame()); // Finally, insert this node as a seen node. self.seen_nodes.insert(idx); } // we go the the "known root" but only operate on a sibling basis VNode::Fragment(frag) => { // create the children directly in the space for child in frag.children { self.create(child); self.change_list.append_child(); } } VNode::Suspended => { todo!("Creation of VNode::Suspended not yet supported") } } } /// Destroy a scope and all of its descendents. /// /// Calling this will run the destuctors on all hooks in the tree. /// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered. fn destroy_scopes(&mut self, old_scope: ScopeIdx) { let mut nodes_to_delete = vec![old_scope]; let mut scopes_to_explore = vec![old_scope]; // explore the scope tree breadth first while let Some(scope_id) = scopes_to_explore.pop() { // If we're planning on deleting this node, then we don't need to both rendering it self.seen_nodes.insert(scope_id); let scope = self.components.try_get(scope_id).unwrap(); for child in scope.descendents.borrow().iter() { // Add this node to be explored scopes_to_explore.push(child.clone()); // Also add it for deletion nodes_to_delete.push(child.clone()); } } // Delete all scopes that we found as part of this subtree for node in nodes_to_delete { log::debug!("Removing scope {:#?}", node); let _scope = self.components.try_remove(node).unwrap(); // do anything we need to do to delete the scope // I think we need to run the destructors on the hooks // TODO } } // Diff event listeners between `old` and `new`. // // The listeners' node must be on top of the change list stack: // // [... node] // // The change list stack is left unchanged. fn diff_listeners(&mut self, old: &[Listener<'_>], new: &[Listener<'_>]) { if !old.is_empty() || !new.is_empty() { self.change_list.commit_traversal(); } 'outer1: for (_l_idx, new_l) in new.iter().enumerate() { // go through each new listener // find its corresponding partner in the old list // if any characteristics changed, remove and then re-add // if nothing changed, then just move on let event_type = new_l.event; for old_l in old { if new_l.event == old_l.event { if new_l.id != old_l.id { self.change_list.remove_event_listener(event_type); self.change_list .update_event_listener(event_type, new_l.scope, new_l.id) } continue 'outer1; } } self.change_list .new_event_listener(event_type, new_l.scope, new_l.id); } 'outer2: for old_l in old { for new_l in new { if new_l.event == old_l.event { continue 'outer2; } } self.change_list.remove_event_listener(old_l.event); } } // Diff a node's attributes. // // The attributes' node must be on top of the change list stack: // // [... node] // // The change list stack is left unchanged. fn diff_attr( &mut self, old: &'a [Attribute<'a>], new: &'a [Attribute<'a>], is_namespaced: bool, ) { // Do O(n^2) passes to add/update and remove attributes, since // there are almost always very few attributes. // // The "fast" path is when the list of attributes name is identical and in the same order // With the Rsx and Html macros, this will almost always be the case 'outer: for new_attr in new { if new_attr.is_volatile() { self.change_list.commit_traversal(); self.change_list .set_attribute(new_attr.name, new_attr.value, is_namespaced); } else { for old_attr in old { if old_attr.name == new_attr.name { if old_attr.value != new_attr.value { self.change_list.commit_traversal(); self.change_list.set_attribute( new_attr.name, new_attr.value, is_namespaced, ); } continue 'outer; } else { // names are different, a varying order of attributes has arrived } } self.change_list.commit_traversal(); self.change_list .set_attribute(new_attr.name, new_attr.value, is_namespaced); } } 'outer2: for old_attr in old { for new_attr in new { if old_attr.name == new_attr.name { continue 'outer2; } } self.change_list.commit_traversal(); self.change_list.remove_attribute(old_attr.name); } } // Diff the given set of old and new children. // // The parent must be on top of the change list stack when this function is // entered: // // [... parent] // // the change list stack is in the same state when this function returns. fn diff_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) { if new.is_empty() { if !old.is_empty() { self.change_list.commit_traversal(); self.remove_all_children(old); } return; } if new.len() == 1 { match (old.first(), &new[0]) { (Some(&VNode::Text(old_text)), &VNode::Text(new_text)) if old_text == new_text => { // Don't take this fast path... } (_, &VNode::Text(text)) => { self.change_list.commit_traversal(); self.change_list.set_text(text); return; } // todo: any more optimizations (_, _) => {} } } if old.is_empty() { if !new.is_empty() { self.change_list.commit_traversal(); self.create_and_append_children(new); } return; } let new_is_keyed = new[0].key().is_some(); let old_is_keyed = old[0].key().is_some(); debug_assert!( new.iter().all(|n| n.key().is_some() == new_is_keyed), "all siblings must be keyed or all siblings must be non-keyed" ); debug_assert!( old.iter().all(|o| o.key().is_some() == old_is_keyed), "all siblings must be keyed or all siblings must be non-keyed" ); if new_is_keyed && old_is_keyed { let t = self.change_list.next_temporary(); self.diff_keyed_children(old, new); self.change_list.set_next_temporary(t); } else { self.diff_non_keyed_children(old, new); } } // Diffing "keyed" children. // // With keyed children, we care about whether we delete, move, or create nodes // versus mutate existing nodes in place. Presumably there is some sort of CSS // transition animation that makes the virtual DOM diffing algorithm // observable. By specifying keys for nodes, we know which virtual DOM nodes // must reuse (or not reuse) the same physical DOM nodes. // // This is loosely based on Inferno's keyed patching implementation. However, we // have to modify the algorithm since we are compiling the diff down into change // list instructions that will be executed later, rather than applying the // changes to the DOM directly as we compare virtual DOMs. // // https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739 // // When entering this function, the parent must be on top of the change list // stack: // // [... parent] // // Upon exiting, the change list stack is in the same state. fn diff_keyed_children(&mut self, old: &[VNode<'a>], new: &[VNode<'a>]) { // if cfg!(debug_assertions) { // let mut keys = fxhash::FxHashSet::default(); // let mut assert_unique_keys = |children: &[VNode]| { // keys.clear(); // for child in children { // let key = child.key(); // debug_assert!( // key.is_some(), // "if any sibling is keyed, all siblings must be keyed" // ); // keys.insert(key); // } // debug_assert_eq!( // children.len(), // keys.len(), // "keyed siblings must each have a unique key" // ); // }; // assert_unique_keys(old); // assert_unique_keys(new); // } // First up, we diff all the nodes with the same key at the beginning of the // children. // // `shared_prefix_count` is the count of how many nodes at the start of // `new` and `old` share the same keys. let shared_prefix_count = match self.diff_keyed_prefix(old, new) { KeyedPrefixResult::Finished => return, KeyedPrefixResult::MoreWorkToDo(count) => count, }; match self.diff_keyed_prefix(old, new) { KeyedPrefixResult::Finished => return, KeyedPrefixResult::MoreWorkToDo(count) => count, }; // Next, we find out how many of the nodes at the end of the children have // the same key. We do _not_ diff them yet, since we want to emit the change // list instructions such that they can be applied in a single pass over the // DOM. Instead, we just save this information for later. // // `shared_suffix_count` is the count of how many nodes at the end of `new` // and `old` share the same keys. let shared_suffix_count = old[shared_prefix_count..] .iter() .rev() .zip(new[shared_prefix_count..].iter().rev()) .take_while(|&(old, new)| old.key() == new.key()) .count(); let old_shared_suffix_start = old.len() - shared_suffix_count; let new_shared_suffix_start = new.len() - shared_suffix_count; // Ok, we now hopefully have a smaller range of children in the middle // within which to re-order nodes with the same keys, remove old nodes with // now-unused keys, and create new nodes with fresh keys. self.diff_keyed_middle( &old[shared_prefix_count..old_shared_suffix_start], &new[shared_prefix_count..new_shared_suffix_start], shared_prefix_count, shared_suffix_count, old_shared_suffix_start, ); // Finally, diff the nodes at the end of `old` and `new` that share keys. let old_suffix = &old[old_shared_suffix_start..]; let new_suffix = &new[new_shared_suffix_start..]; debug_assert_eq!(old_suffix.len(), new_suffix.len()); if !old_suffix.is_empty() { self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start) } } // Diff the prefix of children in `new` and `old` that share the same keys in // the same order. // // Upon entry of this function, the change list stack must be: // // [... parent] // // Upon exit, the change list stack is the same. fn diff_keyed_prefix(&mut self, old: &[VNode<'a>], new: &[VNode<'a>]) -> KeyedPrefixResult { self.change_list.go_down(); let mut shared_prefix_count = 0; for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() { if old.key() != new.key() { break; } self.change_list.go_to_sibling(i); self.diff_node(old, new); shared_prefix_count += 1; } // If that was all of the old children, then create and append the remaining // new children and we're finished. if shared_prefix_count == old.len() { self.change_list.go_up(); self.change_list.commit_traversal(); self.create_and_append_children(&new[shared_prefix_count..]); return KeyedPrefixResult::Finished; } // And if that was all of the new children, then remove all of the remaining // old children and we're finished. if shared_prefix_count == new.len() { self.change_list.go_to_sibling(shared_prefix_count); self.change_list.commit_traversal(); self.remove_self_and_next_siblings(&old[shared_prefix_count..]); return KeyedPrefixResult::Finished; } self.change_list.go_up(); KeyedPrefixResult::MoreWorkToDo(shared_prefix_count) } // The most-general, expensive code path for keyed children diffing. // // We find the longest subsequence within `old` of children that are relatively // ordered the same way in `new` (via finding a longest-increasing-subsequence // of the old child's index within `new`). The children that are elements of // this subsequence will remain in place, minimizing the number of DOM moves we // will have to do. // // Upon entry to this function, the change list stack must be: // // [... parent] // // Upon exit from this function, it will be restored to that same state. fn diff_keyed_middle( &mut self, old: &[VNode<'a>], mut new: &[VNode<'a>], shared_prefix_count: usize, shared_suffix_count: usize, old_shared_suffix_start: usize, ) { // Should have already diffed the shared-key prefixes and suffixes. debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key())); debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key())); // The algorithm below relies upon using `u32::MAX` as a sentinel // value, so if we have that many new nodes, it won't work. This // check is a bit academic (hence only enabled in debug), since // wasm32 doesn't have enough address space to hold that many nodes // in memory. debug_assert!(new.len() < u32::MAX as usize); // Map from each `old` node's key to its index within `old`. let mut old_key_to_old_index = FxHashMap::default(); old_key_to_old_index.reserve(old.len()); old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i))); // The set of shared keys between `new` and `old`. let mut shared_keys = FxHashSet::default(); // Map from each index in `new` to the index of the node in `old` that // has the same key. let mut new_index_to_old_index = Vec::with_capacity(new.len()); new_index_to_old_index.extend(new.iter().map(|n| { let key = n.key(); if let Some(&i) = old_key_to_old_index.get(&key) { shared_keys.insert(key); i } else { u32::MAX as usize } })); // If none of the old keys are reused by the new children, then we // remove all the remaining old children and create the new children // afresh. if shared_suffix_count == 0 && shared_keys.is_empty() { if shared_prefix_count == 0 { self.change_list.commit_traversal(); self.remove_all_children(old); } else { self.change_list.go_down_to_child(shared_prefix_count); self.change_list.commit_traversal(); self.remove_self_and_next_siblings(&old[shared_prefix_count..]); } self.create_and_append_children(new); return; } // Save each of the old children whose keys are reused in the new // children. let mut old_index_to_temp = vec![u32::MAX; old.len()]; let mut start = 0; loop { let end = (start..old.len()) .find(|&i| { let key = old[i].key(); !shared_keys.contains(&key) }) .unwrap_or(old.len()); if end - start > 0 { self.change_list.commit_traversal(); let mut t = self.change_list.save_children_to_temporaries( shared_prefix_count + start, shared_prefix_count + end, ); for i in start..end { old_index_to_temp[i] = t; t += 1; } } debug_assert!(end <= old.len()); if end == old.len() { break; } else { start = end + 1; } } // Remove any old children whose keys were not reused in the new // children. Remove from the end first so that we don't mess up indices. let mut removed_count = 0; for (i, old_child) in old.iter().enumerate().rev() { if !shared_keys.contains(&old_child.key()) { // registry.remove_subtree(old_child); // todo self.change_list.commit_traversal(); self.change_list.remove_child(i + shared_prefix_count); removed_count += 1; } } // If there aren't any more new children, then we are done! if new.is_empty() { return; } // The longest increasing subsequence within `new_index_to_old_index`. This // is the longest sequence on DOM nodes in `old` that are relatively ordered // correctly within `new`. We will leave these nodes in place in the DOM, // and only move nodes that are not part of the LIS. This results in the // maximum number of DOM nodes left in place, AKA the minimum number of DOM // nodes moved. let mut new_index_is_in_lis = FxHashSet::default(); new_index_is_in_lis.reserve(new_index_to_old_index.len()); let mut predecessors = vec![0; new_index_to_old_index.len()]; let mut starts = vec![0; new_index_to_old_index.len()]; longest_increasing_subsequence::lis_with( &new_index_to_old_index, &mut new_index_is_in_lis, |a, b| a < b, &mut predecessors, &mut starts, ); // Now we will iterate from the end of the new children back to the // beginning, diffing old children we are reusing and if they aren't in the // LIS moving them to their new destination, or creating new children. Note // that iterating in reverse order lets us use `Node.prototype.insertBefore` // to move/insert children. // // But first, we ensure that we have a child on the change list stack that // we can `insertBefore`. We handle this once before looping over `new` // children, so that we don't have to keep checking on every loop iteration. if shared_suffix_count > 0 { // There is a shared suffix after these middle children. We will be // inserting before that shared suffix, so add the first child of that // shared suffix to the change list stack. // // [... parent] self.change_list .go_down_to_child(old_shared_suffix_start - removed_count); // [... parent first_child_of_shared_suffix] } else { // There is no shared suffix coming after these middle children. // Therefore we have to process the last child in `new` and move it to // the end of the parent's children if it isn't already there. let last_index = new.len() - 1; // uhhhh why an unwrap? let last = new.last().unwrap(); // let last = new.last().unwrap_throw(); new = &new[..new.len() - 1]; if shared_keys.contains(&last.key()) { let old_index = new_index_to_old_index[last_index]; let temp = old_index_to_temp[old_index]; // [... parent] self.change_list.go_down_to_temp_child(temp); // [... parent last] self.diff_node(&old[old_index], last); if new_index_is_in_lis.contains(&last_index) { // Don't move it, since it is already where it needs to be. } else { self.change_list.commit_traversal(); // [... parent last] self.change_list.append_child(); // [... parent] self.change_list.go_down_to_temp_child(temp); // [... parent last] } } else { self.change_list.commit_traversal(); // [... parent] self.create(last); // [... parent last] self.change_list.append_child(); // [... parent] self.change_list.go_down_to_reverse_child(0); // [... parent last] } } for (new_index, new_child) in new.iter().enumerate().rev() { let old_index = new_index_to_old_index[new_index]; if old_index == u32::MAX as usize { debug_assert!(!shared_keys.contains(&new_child.key())); self.change_list.commit_traversal(); // [... parent successor] self.create(new_child); // [... parent successor new_child] self.change_list.insert_before(); // [... parent new_child] } else { debug_assert!(shared_keys.contains(&new_child.key())); let temp = old_index_to_temp[old_index]; debug_assert_ne!(temp, u32::MAX); if new_index_is_in_lis.contains(&new_index) { // [... parent successor] self.change_list.go_to_temp_sibling(temp); // [... parent new_child] } else { self.change_list.commit_traversal(); // [... parent successor] self.change_list.push_temporary(temp); // [... parent successor new_child] self.change_list.insert_before(); // [... parent new_child] } self.diff_node(&old[old_index], new_child); } } // [... parent child] self.change_list.go_up(); // [... parent] } // Diff the suffix of keyed children that share the same keys in the same order. // // The parent must be on the change list stack when we enter this function: // // [... parent] // // When this function exits, the change list stack remains the same. fn diff_keyed_suffix( &mut self, old: &[VNode<'a>], new: &[VNode<'a>], new_shared_suffix_start: usize, ) { debug_assert_eq!(old.len(), new.len()); debug_assert!(!old.is_empty()); // [... parent] self.change_list.go_down(); // [... parent new_child] for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() { self.change_list.go_to_sibling(new_shared_suffix_start + i); self.diff_node(old_child, new_child); } // [... parent] self.change_list.go_up(); } // Diff children that are not keyed. // // The parent must be on the top of the change list stack when entering this // function: // // [... parent] // // the change list stack is in the same state when this function returns. fn diff_non_keyed_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) { // Handled these cases in `diff_children` before calling this function. debug_assert!(!new.is_empty()); debug_assert!(!old.is_empty()); // [... parent] self.change_list.go_down(); // [... parent child] for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() { // [... parent prev_child] self.change_list.go_to_sibling(i); // [... parent this_child] self.diff_node(old_child, new_child); } match old.len().cmp(&new.len()) { // old.len > new.len -> removing some nodes Ordering::Greater => { // [... parent prev_child] self.change_list.go_to_sibling(new.len()); // [... parent first_child_to_remove] self.change_list.commit_traversal(); // support::remove_self_and_next_siblings(state, &old[new.len()..]); self.remove_self_and_next_siblings(&old[new.len()..]); // [... parent] } // old.len < new.len -> adding some nodes Ordering::Less => { // [... parent last_child] self.change_list.go_up(); // [... parent] self.change_list.commit_traversal(); self.create_and_append_children(&new[old.len()..]); } // old.len == new.len -> no nodes added/removed, but πerhaps changed Ordering::Equal => { // [... parent child] self.change_list.go_up(); // [... parent] } } } // ====================== // Support methods // ====================== // Remove all of a node's children. // // The change list stack must have this shape upon entry to this function: // // [... parent] // // When this function returns, the change list stack is in the same state. pub fn remove_all_children(&mut self, old: &[VNode<'a>]) { debug_assert!(self.change_list.traversal_is_committed()); log::debug!("REMOVING CHILDREN"); for _child in old { // registry.remove_subtree(child); } // Fast way to remove all children: set the node's textContent to an empty // string. self.change_list.set_text(""); } // Create the given children and append them to the parent node. // // The parent node must currently be on top of the change list stack: // // [... parent] // // When this function returns, the change list stack is in the same state. pub fn create_and_append_children(&mut self, new: &[VNode<'a>]) { debug_assert!(self.change_list.traversal_is_committed()); for child in new { self.create(child); self.change_list.append_child(); } } // Remove the current child and all of its following siblings. // // The change list stack must have this shape upon entry to this function: // // [... parent child] // // After the function returns, the child is no longer on the change list stack: // // [... parent] pub fn remove_self_and_next_siblings(&mut self, old: &[VNode<'a>]) { debug_assert!(self.change_list.traversal_is_committed()); for child in old { if let VNode::Component(vcomp) = child { // self.change_list // .create_text_node("placeholder for vcomponent"); todo!() // let root_id = vcomp.stable_addr.as_ref().borrow().unwrap(); // self.lifecycle_events.push_back(LifeCycleEvent::Remove { // root_id, // stable_scope_addr: Rc::downgrade(&vcomp.ass_scope), // }) // let id = get_id(); // *component.stable_addr.as_ref().borrow_mut() = Some(id); // self.change_list.save_known_root(id); // let scope = Rc::downgrade(&component.ass_scope); // self.lifecycle_events.push_back(LifeCycleEvent::Mount { // caller: Rc::downgrade(&component.caller), // root_id: id, // stable_scope_addr: scope, // }); } // registry.remove_subtree(child); } self.change_list.remove_self_and_next_siblings(); } } enum KeyedPrefixResult { // Fast path: we finished diffing all the children just by looking at the // prefix of shared keys! Finished, // There is more diffing work to do. Here is a count of how many children at // the beginning of `new` and `old` we already processed. MoreWorkToDo(usize), }