dioxus/packages/core/src/diff.rs

1395 lines
56 KiB
Rust
Raw Normal View History

2021-06-16 15:19:37 +00:00
//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
//! The DiffMachine calculates the diffs between the old and new frames, updates the new nodes, and modifies the real dom.
2021-06-16 15:19:37 +00:00
//!
//! Notice:
//! ------
//!
2021-06-27 02:13:57 +00:00
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
//! Components, Fragments, Suspense, and additional batching operations.
2021-06-16 15:19:37 +00:00
//!
//! Implementation Details:
//! -----------------------
//!
//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
2021-06-27 02:13:57 +00:00
//! We don't necessarily require that DOM changes happen instnatly during the diffing process, so the implementor may choose
//! to batch nodes if it is more performant for their application. We care about an ID size of u32
2021-02-15 04:39:46 +00:00
//!
//!
2021-06-16 15:19:37 +00:00
//! Further Reading and Thoughts
//! ----------------------------
2021-02-15 04:39:46 +00:00
//!
2021-03-03 07:27:26 +00:00
//! There are more ways of increasing diff performance here that are currently not implemented.
//! More info on how to improve this diffing algorithm:
//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
2021-06-16 15:19:37 +00:00
use crate::{
arena::{ScopeArena, ScopeArenaInner},
innerlude::*,
};
2021-03-03 07:27:26 +00:00
use fxhash::{FxHashMap, FxHashSet};
2021-03-11 17:27:01 +00:00
use std::{
any::Any,
rc::{Rc, Weak},
2021-03-11 17:27:01 +00:00
};
2021-03-03 07:27:26 +00:00
/// The accompanying "real dom" exposes an imperative API for controlling the UI layout
///
2021-06-29 02:22:11 +00:00
/// Instead of having handles directly over nodes, Dioxus uses simple u64s as node IDs.
/// The expectation is that the underlying renderer will mainain their Nodes in something like slotmap or an ECS memory
/// where indexing is very fast. For reference, the slotmap in the WebSys renderer takes about 3ns to randomly access any
/// node.
///
/// The "RealDom" abstracts over the... real dom. The RealDom trait assumes that the renderer maintains a stack of real
/// nodes as the diffing algorithm descenes through the tree. This means that whatever is on top of the stack will receive
/// any modifications that follow. This technique enables the diffing algorithm to avoid directly handling or storing any
/// target-specific Node type as well as easily serializing the edits to be sent over a network or IPC connection.
pub trait RealDom<'a> {
// Navigation
fn push_root(&mut self, root: RealDomNode);
// Add Nodes to the dom
fn append_child(&mut self);
fn replace_with(&mut self);
// Remove Nodesfrom the dom
fn remove(&mut self);
fn remove_all_children(&mut self);
// Create
fn create_text_node(&mut self, text: &'a str) -> RealDomNode;
2021-06-29 02:22:11 +00:00
fn create_element(&mut self, tag: &'static str, ns: Option<&'static str>) -> RealDomNode;
2021-06-27 02:13:57 +00:00
// placeholders are nodes that don't get rendered but still exist as an "anchor" in the real dom
fn create_placeholder(&mut self) -> RealDomNode;
// events
2021-06-23 05:44:48 +00:00
fn new_event_listener(
&mut self,
event: &'static str,
2021-06-23 05:44:48 +00:00
scope: ScopeIdx,
element_id: usize,
realnode: RealDomNode,
);
fn remove_event_listener(&mut self, event: &'static str);
// modify
fn set_text(&mut self, text: &'a str);
2021-06-29 02:22:11 +00:00
fn set_attribute(&mut self, name: &'static str, value: &'a str, ns: Option<&'a str>);
fn remove_attribute(&mut self, name: &'static str);
// node ref
2021-06-20 06:16:42 +00:00
fn raw_node_as_any_mut(&self) -> &mut dyn Any;
}
2021-03-03 07:27:26 +00:00
/// The DiffState is a cursor internal to the VirtualDOM's diffing algorithm that allows persistence of state while
/// diffing trees of components. This means we can "re-enter" a subtree of a component by queuing a "NeedToDiff" event.
///
/// By re-entering via NodeDiff, we can connect disparate edits together into a single EditList. This batching of edits
/// leads to very fast re-renders (all done in a single animation frame).
///
/// It also means diffing two trees is only ever complex as diffing a single smaller tree, and then re-entering at a
/// different cursor position.
///
/// The order of these re-entrances is stored in the DiffState itself. The DiffState comes pre-loaded with a set of components
2021-03-11 17:27:01 +00:00
/// that were modified by the eventtrigger. This prevents doubly evaluating components if they were both updated via
2021-03-03 07:27:26 +00:00
/// subscriptions and props changes.
pub struct DiffMachine<'real, 'bump, Dom: RealDom<'bump>> {
pub dom: &'real mut Dom,
pub components: &'bump ScopeArena,
2021-06-07 18:14:49 +00:00
pub cur_idx: ScopeIdx,
2021-03-05 20:02:36 +00:00
pub diffed: FxHashSet<ScopeIdx>,
2021-06-07 18:14:49 +00:00
pub event_queue: EventQueue,
pub seen_nodes: FxHashSet<ScopeIdx>,
}
2021-02-12 21:11:33 +00:00
impl<'real, 'bump, Dom: RealDom<'bump>> DiffMachine<'real, 'bump, Dom> {
2021-06-20 06:16:42 +00:00
pub fn new(
dom: &'real mut Dom,
components: &'bump ScopeArena,
2021-06-20 06:16:42 +00:00
cur_idx: ScopeIdx,
event_queue: EventQueue,
) -> Self {
2021-02-15 04:39:46 +00:00
Self {
2021-06-07 18:14:49 +00:00
components,
2021-06-20 06:16:42 +00:00
dom,
2021-06-07 18:14:49 +00:00
cur_idx,
event_queue,
2021-02-15 04:39:46 +00:00
diffed: FxHashSet::default(),
2021-06-07 18:14:49 +00:00
seen_nodes: FxHashSet::default(),
}
}
// Diff the `old` node with the `new` node. Emits instructions to modify a
// physical DOM node that reflects `old` into something that reflects `new`.
//
// Upon entry to this function, the physical DOM node must be on the top of the
// change list stack:
//
// [... node]
//
// The change list stack is in the same state when this function exits.
// In the case of Fragments, the parent node is on the stack
pub fn diff_node(&mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>) {
2021-03-03 07:27:26 +00:00
/*
For each valid case, we "commit traversal", meaning we save this current position in the tree.
Then, we diff and queue an edit event (via chagelist). s single trees - when components show up, we save that traversal and then re-enter later.
When re-entering, we reuse the EditList in DiffState
*/
// log::debug!("diffing...");
2021-07-05 05:11:49 +00:00
match (old_node, new_node) {
// Handle the "sane" cases first.
// The rsx and html macros strongly discourage dynamic lists not encapsulated by a "Fragment".
// So the sane (and fast!) cases are where the virtual structure stays the same and is easily diffable.
(VNode::Text(old), VNode::Text(new)) => {
if old.text != new.text {
self.dom.push_root(old.dom_id.get());
log::debug!("Text has changed {}, {}", old.text, new.text);
self.dom.set_text(new.text);
2021-03-14 00:11:06 +00:00
}
2021-07-05 05:11:49 +00:00
new.dom_id.set(old.dom_id.get());
}
2021-03-05 20:02:36 +00:00
2021-07-05 05:11:49 +00:00
(VNode::Element(old), VNode::Element(new)) => {
// If the element type is completely different, the element needs to be re-rendered completely
// This is an optimization React makes due to how users structure their code
//
// In Dioxus, this is less likely to occur unless through a fragment
if new.tag_name != old.tag_name || new.namespace != old.namespace {
self.dom.push_root(old.dom_id.get());
self.create(new_node);
self.dom.replace_with();
2021-07-05 05:11:49 +00:00
return;
}
2021-07-05 05:11:49 +00:00
new.dom_id.set(old.dom_id.get());
2021-06-07 18:14:49 +00:00
2021-07-05 05:11:49 +00:00
self.diff_listeners(old.listeners, new.listeners);
self.diff_attr(old.attributes, new.attributes, new.namespace);
self.diff_children(old.children, new.children);
}
2021-03-03 07:27:26 +00:00
2021-07-05 05:11:49 +00:00
(VNode::Component(old), VNode::Component(new)) => {
log::warn!("diffing components? {:#?}", new.user_fc);
if old.user_fc == new.user_fc {
// Make sure we're dealing with the same component (by function pointer)
// Make sure the new component vnode is referencing the right scope id
let scope_id = old.ass_scope.get();
new.ass_scope.set(scope_id);
// new.mounted_root.set(old.mounted_root.get());
// make sure the component's caller function is up to date
let scope = self.components.try_get_mut(scope_id.unwrap()).unwrap();
// .with_scope(scope_id.unwrap(), |scope| {
scope.caller = Rc::downgrade(&new.caller);
// ack - this doesn't work on its own!
2021-07-05 05:11:49 +00:00
scope.update_children(new.children);
2021-07-05 05:11:49 +00:00
// })
// .unwrap();
// React doesn't automatically memoize, but we do.
// The cost is low enough to make it worth checking
// Rust produces fairly performant comparison methods, sometimes SIMD accelerated
// let should_render = match old.comparator {
// Some(comparator) => comparator(new),
// None => true,
// };
// if should_render {
// // self.dom.commit_traversal();
// let f = self.components.try_get_mut(scope_id.unwrap()).unwrap();
// self.components
// .with_scope(scope_id.unwrap(), |f| {
// log::debug!("running scope during diff {:#?}", scope_id);
2021-07-05 05:11:49 +00:00
scope.run_scope().unwrap();
self.diff_node(scope.old_frame(), scope.next_frame());
// log::debug!("scope completed {:#?}", scope_id);
2021-07-05 05:11:49 +00:00
self.seen_nodes.insert(scope_id.unwrap());
// })
// .unwrap();
// diff_machine.change_list.load_known_root(root_id);
// run the scope
//
// } else {
// log::error!("Memoized componented");
// // Component has memoized itself and doesn't need to be re-rendered.
// // We still need to make sure the child's props are up-to-date.
// // Don't commit traversal
// }
} else {
// It's an entirely different component
2021-06-03 14:42:28 +00:00
2021-07-05 05:11:49 +00:00
// A new component has shown up! We need to destroy the old node
// Wipe the old one and plant the new one
// self.dom.commit_traversal();
// self.dom.replace_node_with(old.dom_id, new.dom_id);
// self.create(new_node);
log::warn!("creating and replacing...");
self.create(new_node);
2021-06-08 18:00:29 +00:00
2021-07-05 05:11:49 +00:00
// self.dom.replace_with();
// self.create_and_repalce(new_node, old.mounted_root.get());
// Now we need to remove the old scope and all of its descendents
let old_scope = old.ass_scope.get().unwrap();
self.destroy_scopes(old_scope);
2021-06-26 07:06:29 +00:00
}
2021-07-05 05:11:49 +00:00
}
2021-07-05 05:11:49 +00:00
(VNode::Fragment(old), VNode::Fragment(new)) => {
// This is the case where options or direct vnodes might be used.
// In this case, it's faster to just skip ahead to their diff
if old.children.len() == 1 && new.children.len() == 1 {
self.diff_node(old.children.get(0).unwrap(), new.children.get(0).unwrap());
return;
}
2021-06-16 15:19:37 +00:00
2021-07-05 05:11:49 +00:00
// Diff using the approach where we're looking for added or removed nodes.
if old.children.len() != new.children.len() {}
2021-06-27 02:13:57 +00:00
2021-07-05 05:11:49 +00:00
// Diff where we think the elements are the same
if old.children.len() == new.children.len() {}
2021-06-27 02:13:57 +00:00
2021-07-05 05:11:49 +00:00
self.diff_children(old.children, new.children);
// todo!()
2021-06-03 14:42:28 +00:00
}
2021-07-05 05:11:49 +00:00
// Okay - these are the "insane" cases where the structure is entirely different.
// The factory and rsx! APIs don't really produce structures like this, so we don't take any too complicated
// code paths.
2021-07-05 05:11:49 +00:00
// in the case where the old node was a fragment but the new nodes are text,
(VNode::Fragment(_) | VNode::Component(_), VNode::Element(_) | VNode::Text(_)) => {
// find the first real element int the old node
let mut iter = RealChildIterator::new(old_node, self.components);
if let Some(first) = iter.next() {
// replace the very first node with the creation of the element or text
} else {
// there are no real elements in the old fragment...
// We need to load up the next real
}
if let VNode::Component(old) = old_node {
// schedule this component's destructor to be run
todo!()
}
}
2021-07-05 05:11:49 +00:00
// In the case where real nodes are being replaced by potentially
(VNode::Element(_) | VNode::Text(_), VNode::Fragment(new)) => {
//
}
2021-07-05 05:11:49 +00:00
(VNode::Text(_), VNode::Element(_)) => {
self.create(new_node);
self.dom.replace_with();
}
(VNode::Element(_), VNode::Text(_)) => {
self.create(new_node);
self.dom.replace_with();
}
_ => {
//
}
}
2021-03-03 07:27:26 +00:00
}
// Emit instructions to create the given virtual node.
//
// The change list stack may have any shape upon entering this function:
//
// [...]
//
// When this function returns, the new node is on top of the change list stack:
//
// [... node]
fn create(&mut self, node: &'bump VNode<'bump>) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-07-05 05:11:49 +00:00
log::warn!("Creating node!");
2021-03-11 17:27:01 +00:00
match node {
VNode::Text(text) => {
2021-06-20 06:16:42 +00:00
let real_id = self.dom.create_text_node(text.text);
text.dom_id.set(real_id);
2021-03-11 17:27:01 +00:00
}
VNode::Element(el) => {
let VElement {
key,
tag_name,
listeners,
attributes,
children,
namespace,
dom_id,
} = el;
2021-03-11 17:27:01 +00:00
// log::info!("Creating {:#?}", node);
let real_id = if let Some(namespace) = namespace {
2021-06-29 02:22:11 +00:00
self.dom.create_element(tag_name, Some(namespace))
2021-03-11 17:27:01 +00:00
} else {
2021-06-29 02:22:11 +00:00
self.dom.create_element(tag_name, None)
};
el.dom_id.set(real_id);
2021-03-11 17:27:01 +00:00
2021-06-23 05:44:48 +00:00
listeners.iter().enumerate().for_each(|(idx, listener)| {
self.dom
.new_event_listener(listener.event, listener.scope, idx, real_id);
listener.mounted_node.set(real_id);
2021-03-11 17:27:01 +00:00
});
for attr in *attributes {
2021-06-29 02:22:11 +00:00
self.dom.set_attribute(&attr.name, &attr.value, *namespace);
2021-03-11 17:27:01 +00:00
}
// Fast path: if there is a single text child, it is faster to
// create-and-append the text node all at once via setting the
// parent's `textContent` in a single change list instruction than
// to emit three instructions to (1) create a text node, (2) set its
// text content, and finally (3) append the text node to this
// parent.
2021-06-27 02:13:57 +00:00
//
// Notice: this is a web-specific optimization and may be changed in the future
//
// TODO move over
2021-06-23 05:44:48 +00:00
// if children.len() == 1 {
// if let VNode::Text(text) = &children[0] {
// self.dom.set_text(text.text);
// return;
// }
// }
2021-03-11 17:27:01 +00:00
for child in *children {
self.create(child);
2021-06-08 18:00:29 +00:00
if let VNode::Fragment(_) = child {
// do nothing
// fragments append themselves
} else {
2021-06-20 06:16:42 +00:00
self.dom.append_child();
2021-06-08 18:00:29 +00:00
}
2021-03-11 17:27:01 +00:00
}
}
VNode::Component(component) => {
2021-07-05 05:11:49 +00:00
// let real_id = self.dom.create_placeholder();
2021-06-07 18:14:49 +00:00
// let root_id = next_id();
2021-06-20 06:16:42 +00:00
// self.dom.save_known_root(root_id);
2021-06-07 18:14:49 +00:00
log::debug!("Mounting a new component");
let caller: Weak<OpaqueComponent> = Rc::downgrade(&component.caller);
// We're modifying the component arena while holding onto references into the assoiated bump arenas of its children
// those references are stable, even if the component arena moves around in memory, thanks to the bump arenas.
// However, there is no way to convey this to rust, so we need to use unsafe to pierce through the lifetime.
2021-06-08 18:00:29 +00:00
let parent_idx = self.cur_idx;
2021-06-07 18:14:49 +00:00
// Insert a new scope into our component list
let idx = self
.components
.with(|components| {
2021-06-30 02:44:21 +00:00
components.insert_with_key(|new_idx| {
2021-06-08 18:00:29 +00:00
let parent_scope = self.components.try_get(parent_idx).unwrap();
let height = parent_scope.height + 1;
2021-06-07 18:14:49 +00:00
Scope::new(
caller,
new_idx,
2021-06-08 18:00:29 +00:00
Some(parent_idx),
2021-06-07 18:14:49 +00:00
height,
self.event_queue.new_channel(height, new_idx),
self.components.clone(),
2021-06-08 18:00:29 +00:00
component.children,
2021-06-07 18:14:49 +00:00
)
})
})
.unwrap();
{
let cur_component = self.components.try_get_mut(idx).unwrap();
let mut ch = cur_component.descendents.borrow_mut();
ch.insert(idx);
std::mem::drop(ch);
}
// yaaaaay lifetimes out of thin air
// really tho, we're merging the frame lifetimes together
let inner: &'bump mut _ = unsafe { &mut *self.components.0.borrow().arena.get() };
2021-06-07 18:14:49 +00:00
let new_component = inner.get_mut(idx).unwrap();
// Actually initialize the caller's slot with the right address
2021-06-30 02:44:21 +00:00
component.ass_scope.set(Some(idx));
2021-06-07 18:14:49 +00:00
// Run the scope for one iteration to initialize it
new_component.run_scope().unwrap();
// And then run the diff algorithm
2021-07-05 05:11:49 +00:00
let _real_id = self.dom.create_placeholder();
2021-06-23 05:44:48 +00:00
self.diff_node(new_component.old_frame(), new_component.next_frame());
2021-06-07 18:14:49 +00:00
// Finally, insert this node as a seen node.
self.seen_nodes.insert(idx);
2021-03-11 17:27:01 +00:00
}
2021-06-07 18:14:49 +00:00
// we go the the "known root" but only operate on a sibling basis
2021-06-03 14:42:28 +00:00
VNode::Fragment(frag) => {
2021-06-08 18:00:29 +00:00
// create the children directly in the space
for child in frag.children {
2021-06-27 02:13:57 +00:00
self.create(child);
self.dom.append_child();
2021-06-08 18:00:29 +00:00
}
}
2021-06-27 02:13:57 +00:00
VNode::Suspended { real } => {
let id = self.dom.create_placeholder();
real.set(id);
2021-06-03 14:42:28 +00:00
}
2021-03-11 17:27:01 +00:00
}
}
}
2021-03-11 17:27:01 +00:00
impl<'a, 'bump, Dom: RealDom<'bump>> DiffMachine<'a, 'bump, Dom> {
2021-06-07 18:14:49 +00:00
/// Destroy a scope and all of its descendents.
///
/// Calling this will run the destuctors on all hooks in the tree.
/// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
fn destroy_scopes(&mut self, old_scope: ScopeIdx) {
2021-06-07 18:14:49 +00:00
let mut nodes_to_delete = vec![old_scope];
let mut scopes_to_explore = vec![old_scope];
// explore the scope tree breadth first
while let Some(scope_id) = scopes_to_explore.pop() {
// If we're planning on deleting this node, then we don't need to both rendering it
self.seen_nodes.insert(scope_id);
let scope = self.components.try_get(scope_id).unwrap();
for child in scope.descendents.borrow().iter() {
// Add this node to be explored
scopes_to_explore.push(child.clone());
// Also add it for deletion
nodes_to_delete.push(child.clone());
}
}
// Delete all scopes that we found as part of this subtree
for node in nodes_to_delete {
log::debug!("Removing scope {:#?}", node);
let _scope = self.components.try_remove(node).unwrap();
// do anything we need to do to delete the scope
// I think we need to run the destructors on the hooks
// TODO
}
}
2021-03-03 07:27:26 +00:00
// Diff event listeners between `old` and `new`.
//
// The listeners' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_listeners(&mut self, old: &[Listener<'_>], new: &[Listener<'_>]) {
2021-03-03 07:27:26 +00:00
if !old.is_empty() || !new.is_empty() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
2021-03-03 07:27:26 +00:00
}
2021-06-23 05:44:48 +00:00
// TODO
// what does "diffing listeners" even mean?
2021-03-03 07:27:26 +00:00
2021-03-11 00:42:31 +00:00
'outer1: for (_l_idx, new_l) in new.iter().enumerate() {
2021-03-16 15:03:59 +00:00
// go through each new listener
// find its corresponding partner in the old list
// if any characteristics changed, remove and then re-add
// if nothing changed, then just move on
2021-03-03 07:27:26 +00:00
let event_type = new_l.event;
for old_l in old {
if new_l.event == old_l.event {
2021-06-23 05:44:48 +00:00
new_l.mounted_node.set(old_l.mounted_node.get());
// if new_l.id != old_l.id {
// self.dom.remove_event_listener(event_type);
// // TODO! we need to mess with events and assign them by RealDomNode
// // self.dom
// // .update_event_listener(event_type, new_l.scope, new_l.id)
// }
2021-03-16 15:03:59 +00:00
2021-03-03 07:27:26 +00:00
continue 'outer1;
}
}
2021-06-23 05:44:48 +00:00
// self.dom
// .new_event_listener(event_type, new_l.scope, new_l.id);
2021-03-03 07:27:26 +00:00
}
2021-06-23 05:44:48 +00:00
// 'outer2: for old_l in old {
// for new_l in new {
// if new_l.event == old_l.event {
// continue 'outer2;
// }
// }
// self.dom.remove_event_listener(old_l.event);
// }
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Diff a node's attributes.
//
// The attributes' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_attr(
&mut self,
old: &'bump [Attribute<'bump>],
new: &'bump [Attribute<'bump>],
2021-06-29 02:22:11 +00:00
namespace: Option<&'bump str>,
// is_namespaced: bool,
) {
2021-03-03 07:27:26 +00:00
// Do O(n^2) passes to add/update and remove attributes, since
// there are almost always very few attributes.
2021-06-07 18:14:49 +00:00
//
// The "fast" path is when the list of attributes name is identical and in the same order
// With the Rsx and Html macros, this will almost always be the case
2021-03-03 07:27:26 +00:00
'outer: for new_attr in new {
if new_attr.is_volatile() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom
2021-06-29 02:22:11 +00:00
.set_attribute(new_attr.name, new_attr.value, namespace);
2021-03-03 07:27:26 +00:00
} else {
for old_attr in old {
if old_attr.name == new_attr.name {
if old_attr.value != new_attr.value {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom
2021-06-29 02:22:11 +00:00
.set_attribute(new_attr.name, new_attr.value, namespace);
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
continue 'outer;
2021-06-07 18:14:49 +00:00
} else {
// names are different, a varying order of attributes has arrived
2021-03-03 07:27:26 +00:00
}
}
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom
2021-06-29 02:22:11 +00:00
.set_attribute(new_attr.name, new_attr.value, namespace);
2021-03-03 07:27:26 +00:00
}
}
'outer2: for old_attr in old {
for new_attr in new {
if old_attr.name == new_attr.name {
continue 'outer2;
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
}
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom.remove_attribute(old_attr.name);
2021-03-03 07:27:26 +00:00
}
}
2021-03-03 07:27:26 +00:00
// Diff the given set of old and new children.
//
// The parent must be on top of the change list stack when this function is
// entered:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
2021-03-03 07:27:26 +00:00
if new.is_empty() {
if !old.is_empty() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
2021-03-03 07:27:26 +00:00
self.remove_all_children(old);
}
return;
}
2021-03-03 07:27:26 +00:00
if new.len() == 1 {
match (&old.first(), &new[0]) {
(Some(VNode::Text(old_vtext)), VNode::Text(new_vtext))
if old_vtext.text == new_vtext.text =>
{
2021-03-03 07:27:26 +00:00
// Don't take this fast path...
}
2021-06-23 05:44:48 +00:00
// (_, VNode::Text(text)) => {
// // self.dom.commit_traversal();
// log::debug!("using optimized text set");
// self.dom.set_text(text.text);
// return;
// }
2021-06-07 18:14:49 +00:00
// todo: any more optimizations
2021-03-03 07:27:26 +00:00
(_, _) => {}
}
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
if old.is_empty() {
if !new.is_empty() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
2021-03-03 07:27:26 +00:00
self.create_and_append_children(new);
}
2021-03-03 07:27:26 +00:00
return;
}
2021-03-03 07:27:26 +00:00
let new_is_keyed = new[0].key().is_some();
let old_is_keyed = old[0].key().is_some();
2021-03-03 07:27:26 +00:00
debug_assert!(
new.iter().all(|n| n.key().is_some() == new_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
debug_assert!(
old.iter().all(|o| o.key().is_some() == old_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
if new_is_keyed && old_is_keyed {
2021-07-05 05:11:49 +00:00
log::warn!("using the wrong approach");
self.diff_non_keyed_children(old, new);
// todo!("Not yet implemented a migration away from temporaries");
// let t = self.dom.next_temporary();
// self.diff_keyed_children(old, new);
// self.dom.set_next_temporary(t);
2021-03-03 07:27:26 +00:00
} else {
// log::debug!("diffing non keyed children");
2021-03-03 07:27:26 +00:00
self.diff_non_keyed_children(old, new);
}
}
2021-03-03 07:27:26 +00:00
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// When entering this function, the parent must be on top of the change list
// stack:
//
// [... parent]
//
// Upon exiting, the change list stack is in the same state.
fn diff_keyed_children(&self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
2021-06-27 02:13:57 +00:00
// todo!();
if cfg!(debug_assertions) {
let mut keys = fxhash::FxHashSet::default();
let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| {
2021-06-27 02:13:57 +00:00
keys.clear();
for child in children {
let key = child.key();
debug_assert!(
key.is_some(),
"if any sibling is keyed, all siblings must be keyed"
);
keys.insert(key);
}
debug_assert_eq!(
children.len(),
keys.len(),
"keyed siblings must each have a unique key"
);
};
assert_unique_keys(old);
assert_unique_keys(new);
}
2021-03-03 07:27:26 +00:00
// First up, we diff all the nodes with the same key at the beginning of the
// children.
//
// `shared_prefix_count` is the count of how many nodes at the start of
// `new` and `old` share the same keys.
let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
// Next, we find out how many of the nodes at the end of the children have
// the same key. We do _not_ diff them yet, since we want to emit the change
// list instructions such that they can be applied in a single pass over the
// DOM. Instead, we just save this information for later.
//
// `shared_suffix_count` is the count of how many nodes at the end of `new`
// and `old` share the same keys.
let shared_suffix_count = old[shared_prefix_count..]
.iter()
.rev()
.zip(new[shared_prefix_count..].iter().rev())
.take_while(|&(old, new)| old.key() == new.key())
.count();
let old_shared_suffix_start = old.len() - shared_suffix_count;
let new_shared_suffix_start = new.len() - shared_suffix_count;
// Ok, we now hopefully have a smaller range of children in the middle
// within which to re-order nodes with the same keys, remove old nodes with
// now-unused keys, and create new nodes with fresh keys.
self.diff_keyed_middle(
&old[shared_prefix_count..old_shared_suffix_start],
&new[shared_prefix_count..new_shared_suffix_start],
shared_prefix_count,
shared_suffix_count,
old_shared_suffix_start,
);
// Finally, diff the nodes at the end of `old` and `new` that share keys.
let old_suffix = &old[old_shared_suffix_start..];
let new_suffix = &new[new_shared_suffix_start..];
debug_assert_eq!(old_suffix.len(), new_suffix.len());
if !old_suffix.is_empty() {
self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
}
}
2021-03-03 07:27:26 +00:00
// Diff the prefix of children in `new` and `old` that share the same keys in
// the same order.
//
// Upon entry of this function, the change list stack must be:
//
// [... parent]
//
// Upon exit, the change list stack is the same.
fn diff_keyed_prefix(
&self,
old: &'bump [VNode<'bump>],
new: &'bump [VNode<'bump>],
) -> KeyedPrefixResult {
todo!()
2021-06-20 06:16:42 +00:00
// self.dom.go_down();
// let mut shared_prefix_count = 0;
// for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() {
// if old.key() != new.key() {
// break;
// }
// self.dom.go_to_sibling(i);
2021-03-03 07:27:26 +00:00
// self.diff_node(old, new);
// shared_prefix_count += 1;
// }
// // If that was all of the old children, then create and append the remaining
// // new children and we're finished.
// if shared_prefix_count == old.len() {
// self.dom.go_up();
// // self.dom.commit_traversal();
// self.create_and_append_children(&new[shared_prefix_count..]);
// return KeyedPrefixResult::Finished;
// }
// // And if that was all of the new children, then remove all of the remaining
// // old children and we're finished.
// if shared_prefix_count == new.len() {
// self.dom.go_to_sibling(shared_prefix_count);
// // self.dom.commit_traversal();
// self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
// return KeyedPrefixResult::Finished;
// }
// self.dom.go_up();
// KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
// The most-general, expensive code path for keyed children diffing.
//
// We find the longest subsequence within `old` of children that are relatively
// ordered the same way in `new` (via finding a longest-increasing-subsequence
// of the old child's index within `new`). The children that are elements of
// this subsequence will remain in place, minimizing the number of DOM moves we
// will have to do.
//
// Upon entry to this function, the change list stack must be:
//
// [... parent]
//
// Upon exit from this function, it will be restored to that same state.
2021-06-20 06:16:42 +00:00
fn diff_keyed_middle(
&self,
old: &[VNode<'bump>],
mut new: &[VNode<'bump>],
2021-03-03 07:27:26 +00:00
shared_prefix_count: usize,
shared_suffix_count: usize,
old_shared_suffix_start: usize,
) {
todo!()
// // Should have already diffed the shared-key prefixes and suffixes.
// debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
// debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
// // The algorithm below relies upon using `u32::MAX` as a sentinel
// // value, so if we have that many new nodes, it won't work. This
// // check is a bit academic (hence only enabled in debug), since
// // wasm32 doesn't have enough address space to hold that many nodes
// // in memory.
// debug_assert!(new.len() < u32::MAX as usize);
// // Map from each `old` node's key to its index within `old`.
// let mut old_key_to_old_index = FxHashMap::default();
// old_key_to_old_index.reserve(old.len());
// old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i)));
// // The set of shared keys between `new` and `old`.
// let mut shared_keys = FxHashSet::default();
// // Map from each index in `new` to the index of the node in `old` that
// // has the same key.
// let mut new_index_to_old_index = Vec::with_capacity(new.len());
// new_index_to_old_index.extend(new.iter().map(|n| {
// let key = n.key();
// if let Some(&i) = old_key_to_old_index.get(&key) {
// shared_keys.insert(key);
// i
// } else {
// u32::MAX as usize
// }
// }));
// // If none of the old keys are reused by the new children, then we
// // remove all the remaining old children and create the new children
// // afresh.
// if shared_suffix_count == 0 && shared_keys.is_empty() {
// if shared_prefix_count == 0 {
// // self.dom.commit_traversal();
// self.remove_all_children(old);
// } else {
// self.dom.go_down_to_child(shared_prefix_count);
// // self.dom.commit_traversal();
// self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
// }
// self.create_and_append_children(new);
// return;
// }
2021-03-03 07:27:26 +00:00
// // Save each of the old children whose keys are reused in the new
// // children.
// let mut old_index_to_temp = vec![u32::MAX; old.len()];
// let mut start = 0;
// loop {
// let end = (start..old.len())
// .find(|&i| {
// let key = old[i].key();
// !shared_keys.contains(&key)
// })
// .unwrap_or(old.len());
// if end - start > 0 {
// // self.dom.commit_traversal();
// let mut t = self.dom.save_children_to_temporaries(
// shared_prefix_count + start,
// shared_prefix_count + end,
// );
// for i in start..end {
// old_index_to_temp[i] = t;
// t += 1;
// }
// }
// debug_assert!(end <= old.len());
// if end == old.len() {
// break;
// } else {
// start = end + 1;
// }
// }
2021-03-03 07:27:26 +00:00
// // Remove any old children whose keys were not reused in the new
// // children. Remove from the end first so that we don't mess up indices.
// let mut removed_count = 0;
// for (i, old_child) in old.iter().enumerate().rev() {
// if !shared_keys.contains(&old_child.key()) {
// // registry.remove_subtree(old_child);
// // todo
// // self.dom.commit_traversal();
// self.dom.remove_child(i + shared_prefix_count);
// removed_count += 1;
// }
// }
2021-03-03 07:27:26 +00:00
// // If there aren't any more new children, then we are done!
// if new.is_empty() {
// return;
// }
2021-03-03 07:27:26 +00:00
// // The longest increasing subsequence within `new_index_to_old_index`. This
// // is the longest sequence on DOM nodes in `old` that are relatively ordered
// // correctly within `new`. We will leave these nodes in place in the DOM,
// // and only move nodes that are not part of the LIS. This results in the
// // maximum number of DOM nodes left in place, AKA the minimum number of DOM
// // nodes moved.
// let mut new_index_is_in_lis = FxHashSet::default();
// new_index_is_in_lis.reserve(new_index_to_old_index.len());
// let mut predecessors = vec![0; new_index_to_old_index.len()];
// let mut starts = vec![0; new_index_to_old_index.len()];
// longest_increasing_subsequence::lis_with(
// &new_index_to_old_index,
// &mut new_index_is_in_lis,
// |a, b| a < b,
// &mut predecessors,
// &mut starts,
// );
// // Now we will iterate from the end of the new children back to the
// // beginning, diffing old children we are reusing and if they aren't in the
// // LIS moving them to their new destination, or creating new children. Note
// // that iterating in reverse order lets us use `Node.prototype.insertBefore`
// // to move/insert children.
// //
// // But first, we ensure that we have a child on the change list stack that
// // we can `insertBefore`. We handle this once before looping over `new`
// // children, so that we don't have to keep checking on every loop iteration.
// if shared_suffix_count > 0 {
// // There is a shared suffix after these middle children. We will be
// // inserting before that shared suffix, so add the first child of that
// // shared suffix to the change list stack.
// //
// // [... parent]
// self.dom
// .go_down_to_child(old_shared_suffix_start - removed_count);
// // [... parent first_child_of_shared_suffix]
// } else {
// // There is no shared suffix coming after these middle children.
// // Therefore we have to process the last child in `new` and move it to
// // the end of the parent's children if it isn't already there.
// let last_index = new.len() - 1;
// // uhhhh why an unwrap?
// let last = new.last().unwrap();
// // let last = new.last().unwrap_throw();
// new = &new[..new.len() - 1];
// if shared_keys.contains(&last.key()) {
// let old_index = new_index_to_old_index[last_index];
// let temp = old_index_to_temp[old_index];
// // [... parent]
// self.dom.go_down_to_temp_child(temp);
// // [... parent last]
// self.diff_node(&old[old_index], last);
// if new_index_is_in_lis.contains(&last_index) {
// // Don't move it, since it is already where it needs to be.
// } else {
// // self.dom.commit_traversal();
// // [... parent last]
// self.dom.append_child();
// // [... parent]
// self.dom.go_down_to_temp_child(temp);
// // [... parent last]
// }
// } else {
// // self.dom.commit_traversal();
// // [... parent]
// self.create(last);
// // [... parent last]
// self.dom.append_child();
// // [... parent]
// self.dom.go_down_to_reverse_child(0);
// // [... parent last]
// }
// }
2021-03-03 07:27:26 +00:00
// for (new_index, new_child) in new.iter().enumerate().rev() {
// let old_index = new_index_to_old_index[new_index];
// if old_index == u32::MAX as usize {
// debug_assert!(!shared_keys.contains(&new_child.key()));
// // self.dom.commit_traversal();
// // [... parent successor]
// self.create(new_child);
// // [... parent successor new_child]
// self.dom.insert_before();
// // [... parent new_child]
// } else {
// debug_assert!(shared_keys.contains(&new_child.key()));
// let temp = old_index_to_temp[old_index];
// debug_assert_ne!(temp, u32::MAX);
// if new_index_is_in_lis.contains(&new_index) {
// // [... parent successor]
// self.dom.go_to_temp_sibling(temp);
// // [... parent new_child]
// } else {
// // self.dom.commit_traversal();
// // [... parent successor]
// self.dom.push_temporary(temp);
// // [... parent successor new_child]
// self.dom.insert_before();
// // [... parent new_child]
// }
2021-03-03 07:27:26 +00:00
// self.diff_node(&old[old_index], new_child);
// }
// }
2021-03-03 07:27:26 +00:00
// // [... parent child]
// self.dom.go_up();
2021-03-03 07:27:26 +00:00
// [... parent]
}
2021-03-03 07:27:26 +00:00
// Diff the suffix of keyed children that share the same keys in the same order.
//
// The parent must be on the change list stack when we enter this function:
//
// [... parent]
//
// When this function exits, the change list stack remains the same.
2021-06-20 06:16:42 +00:00
fn diff_keyed_suffix(
&self,
old: &[VNode<'bump>],
new: &[VNode<'bump>],
2021-03-03 07:27:26 +00:00
new_shared_suffix_start: usize,
) {
todo!()
// debug_assert_eq!(old.len(), new.len());
// debug_assert!(!old.is_empty());
// // [... parent]
// self.dom.go_down();
// // [... parent new_child]
// for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() {
// self.dom.go_to_sibling(new_shared_suffix_start + i);
// self.diff_node(old_child, new_child);
// }
2021-03-03 07:27:26 +00:00
// // [... parent]
// self.dom.go_up();
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_non_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
2021-03-03 07:27:26 +00:00
// Handled these cases in `diff_children` before calling this function.
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
2021-03-03 07:27:26 +00:00
// [... parent]
// self.dom.go_down();
// self.dom.push_root()
2021-03-03 07:27:26 +00:00
// [... parent child]
2021-06-23 05:44:48 +00:00
// todo!()
for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() {
// [... parent prev_child]
// self.dom.go_to_sibling(i);
// [... parent this_child]
2021-06-27 02:13:57 +00:00
2021-07-05 05:11:49 +00:00
// let did = old_child.get_mounted_id(self.components).unwrap();
// if did.0 == 0 {
// log::debug!("Root is bad: {:#?}", old_child);
// }
// self.dom.push_root(did);
2021-06-23 05:44:48 +00:00
self.diff_node(old_child, new_child);
2021-07-05 05:11:49 +00:00
// let old_id = old_child.get_mounted_id(self.components).unwrap();
// let new_id = new_child.get_mounted_id(self.components).unwrap();
// log::debug!(
// "pushed root. {:?}, {:?}",
// old_child.get_mounted_id(self.components).unwrap(),
// new_child.get_mounted_id(self.components).unwrap()
// );
// if old_id != new_id {
// log::debug!("Mismatch: {:?}", new_child);
// }
2021-06-23 05:44:48 +00:00
}
2021-03-03 07:27:26 +00:00
// match old.len().cmp(&new.len()) {
// // old.len > new.len -> removing some nodes
// Ordering::Greater => {
// // [... parent prev_child]
// self.dom.go_to_sibling(new.len());
// // [... parent first_child_to_remove]
// // self.dom.commit_traversal();
// // support::remove_self_and_next_siblings(state, &old[new.len()..]);
// self.remove_self_and_next_siblings(&old[new.len()..]);
// // [... parent]
// }
// // old.len < new.len -> adding some nodes
// Ordering::Less => {
// // [... parent last_child]
// self.dom.go_up();
// // [... parent]
// // self.dom.commit_traversal();
// self.create_and_append_children(&new[old.len()..]);
// }
// // old.len == new.len -> no nodes added/removed, but πerhaps changed
// Ordering::Equal => {
// // [... parent child]
// self.dom.go_up();
// // [... parent]
// }
// }
2021-03-03 07:27:26 +00:00
}
// ======================
// Support methods
// ======================
// Remove all of a node's children.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-05-19 14:14:02 +00:00
log::debug!("REMOVING CHILDREN");
2021-03-03 07:27:26 +00:00
for _child in old {
// registry.remove_subtree(child);
}
// Fast way to remove all children: set the node's textContent to an empty
// string.
2021-06-20 06:16:42 +00:00
todo!()
// self.dom.set_inner_text("");
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Create the given children and append them to the parent node.
//
// The parent node must currently be on top of the change list stack:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-03-03 07:27:26 +00:00
for child in new {
// self.create_and_append(node, parent)
self.create(child);
self.dom.append_child();
2021-03-03 07:27:26 +00:00
}
}
// Remove the current child and all of its following siblings.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent child]
//
// After the function returns, the child is no longer on the change list stack:
//
// [... parent]
pub fn remove_self_and_next_siblings(&self, old: &[VNode<'bump>]) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-05-19 14:14:02 +00:00
for child in old {
if let VNode::Component(vcomp) = child {
2021-06-20 06:16:42 +00:00
// dom
2021-05-19 14:14:02 +00:00
// .create_text_node("placeholder for vcomponent");
todo!()
// let root_id = vcomp.stable_addr.as_ref().borrow().unwrap();
// self.lifecycle_events.push_back(LifeCycleEvent::Remove {
// root_id,
// stable_scope_addr: Rc::downgrade(&vcomp.ass_scope),
// })
2021-05-19 14:14:02 +00:00
// let id = get_id();
// *component.stable_addr.as_ref().borrow_mut() = Some(id);
2021-06-20 06:16:42 +00:00
// self.dom.save_known_root(id);
2021-05-19 14:14:02 +00:00
// let scope = Rc::downgrade(&component.ass_scope);
// self.lifecycle_events.push_back(LifeCycleEvent::Mount {
// caller: Rc::downgrade(&component.caller),
// root_id: id,
// stable_scope_addr: scope,
// });
}
2021-03-03 07:27:26 +00:00
// registry.remove_subtree(child);
}
todo!()
// self.dom.remove_self_and_next_siblings();
}
}
2021-03-03 07:27:26 +00:00
enum KeyedPrefixResult {
// Fast path: we finished diffing all the children just by looking at the
// prefix of shared keys!
Finished,
// There is more diffing work to do. Here is a count of how many children at
// the beginning of `new` and `old` we already processed.
MoreWorkToDo(usize),
}
2021-06-26 07:06:29 +00:00
2021-07-05 05:11:49 +00:00
/// This iterator iterates through a list of virtual children and only returns real children (Elements or Text).
///
/// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like
/// "InsertBefore".
struct RealChildIterator<'a> {
2021-06-26 07:06:29 +00:00
scopes: &'a ScopeArena,
// Heuristcally we should never bleed into 5 completely nested fragments/components
// Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 5]>,
}
2021-07-05 05:11:49 +00:00
impl<'a> RealChildIterator<'a> {
2021-06-26 07:06:29 +00:00
fn new(starter: &'a VNode<'a>, scopes: &'a ScopeArena) -> Self {
Self {
scopes,
stack: smallvec::smallvec![(0, starter)],
}
}
}
2021-06-30 02:44:21 +00:00
// impl<'a> DoubleEndedIterator for ChildIterator<'a> {
// fn next_back(&mut self) -> Option<Self::Item> {
// todo!()
// }
// }
2021-07-05 05:11:49 +00:00
impl<'a> Iterator for RealChildIterator<'a> {
2021-06-26 07:06:29 +00:00
type Item = &'a VNode<'a>;
fn next(&mut self) -> Option<&'a VNode<'a>> {
let mut should_pop = false;
let mut returned_node = None;
let mut should_push = None;
while returned_node.is_none() {
if let Some((count, node)) = self.stack.last_mut() {
match node {
// We can only exit our looping when we get "real" nodes
VNode::Element(_) | VNode::Text(_) => {
// We've recursed INTO an element/text
// We need to recurse *out* of it and move forward to the next
should_pop = true;
returned_node = Some(&**node);
}
// If we get a fragment we push the next child
VNode::Fragment(frag) => {
let _count = *count as usize;
if _count >= frag.children.len() {
should_pop = true;
} else {
should_push = Some(&frag.children[_count]);
}
}
// Immediately abort suspended nodes - can't do anything with them yet
// VNode::Suspended => should_pop = true,
2021-06-27 02:13:57 +00:00
VNode::Suspended { real } => todo!(),
2021-06-26 07:06:29 +00:00
// For components, we load their root and push them onto the stack
VNode::Component(sc) => {
2021-06-30 02:44:21 +00:00
let scope = self.scopes.try_get(sc.ass_scope.get().unwrap()).unwrap();
2021-06-26 07:06:29 +00:00
// Simply swap the current node on the stack with the root of the component
*node = scope.root();
}
}
} else {
// If there's no more items on the stack, we're done!
return None;
}
if should_pop {
self.stack.pop();
if let Some((id, _)) = self.stack.last_mut() {
*id += 1;
}
should_pop = false;
}
if let Some(push) = should_push {
self.stack.push((0, push));
should_push = None;
}
}
returned_node
}
}
mod tests {
use super::*;
use crate as dioxus;
use crate::innerlude::*;
use crate::util::DebugDom;
use dioxus_core_macro::*;
#[test]
fn test_child_iterator() {
static App: FC<()> = |cx| {
cx.render(rsx! {
Fragment {
div {}
h1 {}
h2 {}
h3 {}
Fragment {
"internal node"
div {
"baller text shouldn't show up"
}
p {
}
Fragment {
Fragment {
"wow you really like framgents"
Fragment {
"why are you like this"
Fragment {
"just stop now please"
Fragment {
"this hurts"
Fragment {
"who needs this many fragments?????"
Fragment {
"just... fine..."
Fragment {
"no"
}
}
}
}
}
}
}
}
}
"my text node 1"
"my text node 2"
"my text node 3"
"my text node 4"
}
})
};
let mut dom = VirtualDom::new(App);
let mut renderer = DebugDom::new();
dom.rebuild(&mut renderer).unwrap();
let starter = dom.base_scope().root();
2021-07-05 05:11:49 +00:00
let ite = RealChildIterator::new(starter, &dom.components);
2021-06-26 07:06:29 +00:00
for child in ite {
match child {
VNode::Element(el) => println!("Found: Element {}", el.tag_name),
VNode::Text(t) => println!("Found: Text {:?}", t.text),
// These would represent failing cases.
VNode::Fragment(_) => panic!("Found: Fragment"),
2021-06-27 02:13:57 +00:00
VNode::Suspended { real } => panic!("Found: Suspended"),
2021-06-26 07:06:29 +00:00
VNode::Component(_) => panic!("Found: Component"),
}
}
}
}