dioxus/packages/core/src/diff.rs

1209 lines
49 KiB
Rust
Raw Normal View History

2021-06-16 15:19:37 +00:00
//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
//! The DiffMachine calculates the diffs between the old and new frames, updates the new nodes, and modifies the real dom.
2021-06-16 15:19:37 +00:00
//!
//! Notice:
//! ------
//!
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and modified to support Components,
//! Fragments, Suspense, and additional batching operations.
//!
//! Implementation Details:
//! -----------------------
//!
//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
//! We don't necessarily intend for changes to happen exactly during the diffing process, so the implementor may choose
//! to batch nodes if it is more performant for their application. The u32 should be a no-op to hash,
2021-02-15 04:39:46 +00:00
//!
//!
2021-06-16 15:19:37 +00:00
//! Further Reading and Thoughts
//! ----------------------------
2021-02-15 04:39:46 +00:00
//!
2021-03-03 07:27:26 +00:00
//! There are more ways of increasing diff performance here that are currently not implemented.
//! More info on how to improve this diffing algorithm:
//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
2021-06-16 15:19:37 +00:00
use crate::{arena::ScopeArena, innerlude::*};
2021-03-03 07:27:26 +00:00
use fxhash::{FxHashMap, FxHashSet};
2021-03-11 17:27:01 +00:00
use std::{
any::Any,
cell::Cell,
2021-03-11 17:27:01 +00:00
cmp::Ordering,
rc::{Rc, Weak},
2021-03-11 17:27:01 +00:00
};
2021-03-03 07:27:26 +00:00
/// The accompanying "real dom" exposes an imperative API for controlling the UI layout
///
/// Instead of having handles directly over nodes, Dioxus uses simple u32s as node IDs.
2021-06-20 06:16:42 +00:00
/// This allows layouts with up to 4,294,967,295 nodes. If we use nohasher, then retrieving is very fast.
/// The "RealDom" abstracts over the... real dom. Elements are mapped by ID. The RealDom is inteded to maintain a stack
/// of real nodes as the diffing algorithm descenes through the tree. This means that whatever is on top of the stack
/// will receive modifications. However, instead of using child-based methods for descending through the tree, we instead
/// ask the RealDom to either push or pop real nodes onto the stack. This saves us the indexing cost while working on a
/// single node
pub trait RealDom {
// Navigation
fn push_root(&mut self, root: RealDomNode);
// Add Nodes to the dom
fn append_child(&mut self);
fn replace_with(&mut self);
// Remove Nodesfrom the dom
fn remove(&mut self);
fn remove_all_children(&mut self);
// Create
fn create_text_node(&mut self, text: &str) -> RealDomNode;
fn create_element(&mut self, tag: &str) -> RealDomNode;
fn create_element_ns(&mut self, tag: &str, namespace: &str) -> RealDomNode;
// events
2021-06-23 05:44:48 +00:00
fn new_event_listener(
&mut self,
event: &str,
scope: ScopeIdx,
element_id: usize,
realnode: RealDomNode,
);
// fn new_event_listener(&mut self, event: &str);
fn remove_event_listener(&mut self, event: &str);
// modify
fn set_text(&mut self, text: &str);
fn set_attribute(&mut self, name: &str, value: &str, is_namespaced: bool);
fn remove_attribute(&mut self, name: &str);
// node ref
2021-06-20 06:16:42 +00:00
fn raw_node_as_any_mut(&self) -> &mut dyn Any;
}
2021-03-03 07:27:26 +00:00
/// The DiffState is a cursor internal to the VirtualDOM's diffing algorithm that allows persistence of state while
/// diffing trees of components. This means we can "re-enter" a subtree of a component by queuing a "NeedToDiff" event.
///
/// By re-entering via NodeDiff, we can connect disparate edits together into a single EditList. This batching of edits
/// leads to very fast re-renders (all done in a single animation frame).
///
/// It also means diffing two trees is only ever complex as diffing a single smaller tree, and then re-entering at a
/// different cursor position.
///
/// The order of these re-entrances is stored in the DiffState itself. The DiffState comes pre-loaded with a set of components
2021-03-11 17:27:01 +00:00
/// that were modified by the eventtrigger. This prevents doubly evaluating components if they were both updated via
2021-03-03 07:27:26 +00:00
/// subscriptions and props changes.
2021-06-20 06:16:42 +00:00
pub struct DiffMachine<'a, Dom: RealDom> {
pub dom: &'a mut Dom,
2021-06-07 18:14:49 +00:00
pub cur_idx: ScopeIdx,
2021-03-05 20:02:36 +00:00
pub diffed: FxHashSet<ScopeIdx>,
2021-06-07 18:14:49 +00:00
pub components: ScopeArena,
pub event_queue: EventQueue,
pub seen_nodes: FxHashSet<ScopeIdx>,
}
2021-02-12 21:11:33 +00:00
2021-06-20 06:16:42 +00:00
impl<'a, Dom: RealDom> DiffMachine<'a, Dom> {
pub fn new(
dom: &'a mut Dom,
components: ScopeArena,
cur_idx: ScopeIdx,
event_queue: EventQueue,
) -> Self {
2021-02-15 04:39:46 +00:00
Self {
2021-06-07 18:14:49 +00:00
components,
2021-06-20 06:16:42 +00:00
dom,
2021-06-07 18:14:49 +00:00
cur_idx,
event_queue,
2021-02-15 04:39:46 +00:00
diffed: FxHashSet::default(),
2021-06-07 18:14:49 +00:00
seen_nodes: FxHashSet::default(),
}
}
// Diff the `old` node with the `new` node. Emits instructions to modify a
// physical DOM node that reflects `old` into something that reflects `new`.
//
// Upon entry to this function, the physical DOM node must be on the top of the
// change list stack:
//
// [... node]
//
// The change list stack is in the same state when this function exits.
// In the case of Fragments, the parent node is on the stack
pub fn diff_node(&mut self, old_node: &VNode<'a>, new_node: &VNode<'a>) {
2021-06-20 06:16:42 +00:00
// pub fn diff_node(&self, old: &VNode<'a>, new: &VNode<'a>) {
2021-03-03 07:27:26 +00:00
/*
For each valid case, we "commit traversal", meaning we save this current position in the tree.
Then, we diff and queue an edit event (via chagelist). s single trees - when components show up, we save that traversal and then re-enter later.
When re-entering, we reuse the EditList in DiffState
*/
match old_node {
VNode::Element(old) => match new_node {
// New node is an element, old node was en element, need to investiage more deeply
VNode::Element(new) => {
// If the element type is completely different, the element needs to be re-rendered completely
// This is an optimization React makes due to how users structure their code
if new.tag_name != old.tag_name || new.namespace != old.namespace {
self.create(new_node);
self.dom.replace_with();
return;
2021-06-07 18:14:49 +00:00
}
2021-06-23 05:44:48 +00:00
new.dom_id.set(old.dom_id.get());
2021-06-07 18:14:49 +00:00
self.diff_listeners(old.listeners, new.listeners);
self.diff_attr(old.attributes, new.attributes, new.namespace.is_some());
self.diff_children(old.children, new.children);
}
// New node is a text element, need to replace the element with a simple text node
VNode::Text(_) => {
2021-06-23 05:44:48 +00:00
log::debug!("Replacing el with text");
self.create(new_node);
self.dom.replace_with();
2021-03-14 00:11:06 +00:00
}
2021-03-05 20:02:36 +00:00
// New node is a component
// Make the component and replace our element on the stack with it
VNode::Component(_) => {
self.create(new_node);
self.dom.replace_with();
}
2021-06-07 18:14:49 +00:00
// New node is actually a sequence of nodes.
// We need to replace this one node with a sequence of nodes
// Not yet implement because it's kinda hairy
VNode::Fragment(_) => todo!(),
2021-03-03 07:27:26 +00:00
// New Node is actually suspended. Todo
VNode::Suspended => todo!(),
},
2021-06-03 14:42:28 +00:00
// Old element was text
VNode::Text(old) => match new_node {
VNode::Text(new) => {
if old.text != new.text {
2021-06-23 05:44:48 +00:00
log::debug!("Text has changed {}, {}", old.text, new.text);
self.dom.set_text(new.text);
}
2021-06-23 05:44:48 +00:00
new.dom_id.set(old.dom_id.get());
}
VNode::Element(_) | VNode::Component(_) => {
self.create(new_node);
self.dom.replace_with();
}
2021-06-08 18:00:29 +00:00
// TODO on handling these types
VNode::Fragment(_) => todo!(),
VNode::Suspended => todo!(),
},
// Old element was a component
VNode::Component(old) => {
match new_node {
// It's something entirely different
VNode::Element(_) | VNode::Text(_) => {
self.create(new_node);
self.dom.replace_with();
}
2021-06-16 15:19:37 +00:00
// It's also a component
VNode::Component(new) => {
match old.user_fc == new.user_fc {
// Make sure we're dealing with the same component (by function pointer)
true => {
// Make sure the new component vnode is referencing the right scope id
let scope_id = old.ass_scope.borrow().clone();
*new.ass_scope.borrow_mut() = scope_id;
// make sure the component's caller function is up to date
self.components
.with_scope(scope_id.unwrap(), |scope| {
scope.caller = Rc::downgrade(&new.caller)
})
.unwrap();
// React doesn't automatically memoize, but we do.
// The cost is low enough to make it worth checking
let should_render = match old.comparator {
Some(comparator) => comparator(new),
None => true,
};
if should_render {
// // self.dom.commit_traversal();
self.components
.with_scope(scope_id.unwrap(), |f| {
f.run_scope().unwrap();
})
.unwrap();
// diff_machine.change_list.load_known_root(root_id);
// run the scope
//
} else {
// Component has memoized itself and doesn't need to be re-rendered.
// We still need to make sure the child's props are up-to-date.
// Don't commit traversal
}
}
// It's an entirely different component
false => {
// A new component has shown up! We need to destroy the old node
// Wipe the old one and plant the new one
// self.dom.commit_traversal();
// self.dom.replace_node_with(old.dom_id, new.dom_id);
// self.create(new_node);
// self.dom.replace_with();
self.create(new_node);
// self.create_and_repalce(new_node, old.mounted_root.get());
// Now we need to remove the old scope and all of its descendents
let old_scope = old.ass_scope.borrow().as_ref().unwrap().clone();
self.destroy_scopes(old_scope);
}
}
}
2021-06-16 15:19:37 +00:00
VNode::Fragment(_) => todo!(),
VNode::Suspended => todo!(),
}
2021-06-03 14:42:28 +00:00
}
VNode::Fragment(old) => {
//
match new_node {
VNode::Fragment(_) => todo!(),
// going from fragment to element means we're going from many (or potentially none) to one
VNode::Element(new) => {}
VNode::Text(_) => todo!(),
VNode::Suspended => todo!(),
VNode::Component(_) => todo!(),
}
}
// a suspended node will perform a mem-copy of the previous elements until it is ready
// this means that event listeners will need to be disabled and removed
// it also means that props will need to disabled - IE if the node "came out of hibernation" any props should be considered outdated
VNode::Suspended => {
//
match new_node {
VNode::Suspended => todo!(),
VNode::Element(_) => todo!(),
VNode::Text(_) => todo!(),
VNode::Fragment(_) => todo!(),
VNode::Component(_) => todo!(),
}
}
}
2021-03-03 07:27:26 +00:00
}
// Emit instructions to create the given virtual node.
//
// The change list stack may have any shape upon entering this function:
//
// [...]
//
// When this function returns, the new node is on top of the change list stack:
//
// [... node]
fn create(&mut self, node: &VNode<'a>) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-03-11 17:27:01 +00:00
match node {
VNode::Text(text) => {
2021-06-20 06:16:42 +00:00
let real_id = self.dom.create_text_node(text.text);
text.dom_id.set(real_id);
2021-03-11 17:27:01 +00:00
}
VNode::Element(el) => {
let VElement {
key,
tag_name,
listeners,
attributes,
children,
namespace,
dom_id,
} = el;
2021-03-11 17:27:01 +00:00
// log::info!("Creating {:#?}", node);
let real_id = if let Some(namespace) = namespace {
2021-06-20 06:16:42 +00:00
self.dom.create_element_ns(tag_name, namespace)
2021-03-11 17:27:01 +00:00
} else {
2021-06-20 06:16:42 +00:00
self.dom.create_element(tag_name)
};
el.dom_id.set(real_id);
2021-03-11 17:27:01 +00:00
2021-06-23 05:44:48 +00:00
listeners.iter().enumerate().for_each(|(idx, listener)| {
self.dom
.new_event_listener(listener.event, listener.scope, idx, real_id);
listener.mounted_node.set(real_id);
2021-03-11 17:27:01 +00:00
});
for attr in *attributes {
self.dom
.set_attribute(&attr.name, &attr.value, namespace.is_some());
2021-03-11 17:27:01 +00:00
}
// Fast path: if there is a single text child, it is faster to
// create-and-append the text node all at once via setting the
// parent's `textContent` in a single change list instruction than
// to emit three instructions to (1) create a text node, (2) set its
// text content, and finally (3) append the text node to this
// parent.
2021-06-23 05:44:48 +00:00
// if children.len() == 1 {
// if let VNode::Text(text) = &children[0] {
// self.dom.set_text(text.text);
// return;
// }
// }
2021-03-11 17:27:01 +00:00
for child in *children {
self.create(child);
2021-06-08 18:00:29 +00:00
if let VNode::Fragment(_) = child {
// do nothing
// fragments append themselves
} else {
2021-06-20 06:16:42 +00:00
self.dom.append_child();
2021-06-08 18:00:29 +00:00
}
2021-03-11 17:27:01 +00:00
}
}
VNode::Component(component) => {
2021-06-20 06:16:42 +00:00
self.dom.create_text_node("placeholder for vcomponent");
2021-06-07 18:14:49 +00:00
// let root_id = next_id();
2021-06-20 06:16:42 +00:00
// self.dom.save_known_root(root_id);
2021-06-07 18:14:49 +00:00
log::debug!("Mounting a new component");
let caller: Weak<OpaqueComponent> = Rc::downgrade(&component.caller);
// We're modifying the component arena while holding onto references into the assoiated bump arenas of its children
// those references are stable, even if the component arena moves around in memory, thanks to the bump arenas.
// However, there is no way to convey this to rust, so we need to use unsafe to pierce through the lifetime.
2021-06-08 18:00:29 +00:00
let parent_idx = self.cur_idx;
2021-06-07 18:14:49 +00:00
// Insert a new scope into our component list
let idx = self
.components
.with(|components| {
components.insert_with(|new_idx| {
2021-06-08 18:00:29 +00:00
let parent_scope = self.components.try_get(parent_idx).unwrap();
let height = parent_scope.height + 1;
2021-06-07 18:14:49 +00:00
Scope::new(
caller,
new_idx,
2021-06-08 18:00:29 +00:00
Some(parent_idx),
2021-06-07 18:14:49 +00:00
height,
self.event_queue.new_channel(height, new_idx),
self.components.clone(),
2021-06-08 18:00:29 +00:00
component.children,
2021-06-07 18:14:49 +00:00
)
})
})
.unwrap();
{
let cur_component = self.components.try_get_mut(idx).unwrap();
let mut ch = cur_component.descendents.borrow_mut();
ch.insert(idx);
std::mem::drop(ch);
}
// yaaaaay lifetimes out of thin air
// really tho, we're merging the frame lifetimes together
let inner: &'a mut _ = unsafe { &mut *self.components.0.borrow().arena.get() };
let new_component = inner.get_mut(idx).unwrap();
// Actually initialize the caller's slot with the right address
*component.ass_scope.borrow_mut() = Some(idx);
// Run the scope for one iteration to initialize it
new_component.run_scope().unwrap();
// And then run the diff algorithm
2021-06-23 05:44:48 +00:00
// todo!();
self.diff_node(new_component.old_frame(), new_component.next_frame());
2021-06-07 18:14:49 +00:00
// Finally, insert this node as a seen node.
self.seen_nodes.insert(idx);
2021-03-11 17:27:01 +00:00
}
2021-06-07 18:14:49 +00:00
// we go the the "known root" but only operate on a sibling basis
2021-06-03 14:42:28 +00:00
VNode::Fragment(frag) => {
2021-06-08 18:00:29 +00:00
// create the children directly in the space
for child in frag.children {
todo!()
// self.create(child);
2021-06-20 06:16:42 +00:00
// self.dom.append_child();
2021-06-08 18:00:29 +00:00
}
}
VNode::Suspended => {
todo!("Creation of VNode::Suspended not yet supported")
2021-06-03 14:42:28 +00:00
}
2021-03-11 17:27:01 +00:00
}
}
}
2021-03-11 17:27:01 +00:00
impl<'a, Dom: RealDom> DiffMachine<'a, Dom> {
2021-06-07 18:14:49 +00:00
/// Destroy a scope and all of its descendents.
///
/// Calling this will run the destuctors on all hooks in the tree.
/// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
fn destroy_scopes(&mut self, old_scope: ScopeIdx) {
2021-06-07 18:14:49 +00:00
let mut nodes_to_delete = vec![old_scope];
let mut scopes_to_explore = vec![old_scope];
// explore the scope tree breadth first
while let Some(scope_id) = scopes_to_explore.pop() {
// If we're planning on deleting this node, then we don't need to both rendering it
self.seen_nodes.insert(scope_id);
let scope = self.components.try_get(scope_id).unwrap();
for child in scope.descendents.borrow().iter() {
// Add this node to be explored
scopes_to_explore.push(child.clone());
// Also add it for deletion
nodes_to_delete.push(child.clone());
}
}
// Delete all scopes that we found as part of this subtree
for node in nodes_to_delete {
log::debug!("Removing scope {:#?}", node);
let _scope = self.components.try_remove(node).unwrap();
// do anything we need to do to delete the scope
// I think we need to run the destructors on the hooks
// TODO
}
}
2021-03-03 07:27:26 +00:00
// Diff event listeners between `old` and `new`.
//
// The listeners' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_listeners(&mut self, old: &[Listener<'_>], new: &[Listener<'_>]) {
2021-03-03 07:27:26 +00:00
if !old.is_empty() || !new.is_empty() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
2021-03-03 07:27:26 +00:00
}
2021-06-23 05:44:48 +00:00
// TODO
// what does "diffing listeners" even mean?
2021-03-03 07:27:26 +00:00
2021-03-11 00:42:31 +00:00
'outer1: for (_l_idx, new_l) in new.iter().enumerate() {
2021-03-16 15:03:59 +00:00
// go through each new listener
// find its corresponding partner in the old list
// if any characteristics changed, remove and then re-add
// if nothing changed, then just move on
2021-03-03 07:27:26 +00:00
let event_type = new_l.event;
for old_l in old {
if new_l.event == old_l.event {
2021-06-23 05:44:48 +00:00
new_l.mounted_node.set(old_l.mounted_node.get());
// if new_l.id != old_l.id {
// self.dom.remove_event_listener(event_type);
// // TODO! we need to mess with events and assign them by RealDomNode
// // self.dom
// // .update_event_listener(event_type, new_l.scope, new_l.id)
// }
2021-03-16 15:03:59 +00:00
2021-03-03 07:27:26 +00:00
continue 'outer1;
}
}
2021-06-23 05:44:48 +00:00
// self.dom
// .new_event_listener(event_type, new_l.scope, new_l.id);
2021-03-03 07:27:26 +00:00
}
2021-06-23 05:44:48 +00:00
// 'outer2: for old_l in old {
// for new_l in new {
// if new_l.event == old_l.event {
// continue 'outer2;
// }
// }
// self.dom.remove_event_listener(old_l.event);
// }
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Diff a node's attributes.
//
// The attributes' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_attr(
&mut self,
old: &'a [Attribute<'a>],
new: &'a [Attribute<'a>],
is_namespaced: bool,
) {
2021-03-03 07:27:26 +00:00
// Do O(n^2) passes to add/update and remove attributes, since
// there are almost always very few attributes.
2021-06-07 18:14:49 +00:00
//
// The "fast" path is when the list of attributes name is identical and in the same order
// With the Rsx and Html macros, this will almost always be the case
2021-03-03 07:27:26 +00:00
'outer: for new_attr in new {
if new_attr.is_volatile() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom
2021-03-03 07:27:26 +00:00
.set_attribute(new_attr.name, new_attr.value, is_namespaced);
} else {
for old_attr in old {
if old_attr.name == new_attr.name {
if old_attr.value != new_attr.value {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom
.set_attribute(new_attr.name, new_attr.value, is_namespaced);
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
continue 'outer;
2021-06-07 18:14:49 +00:00
} else {
// names are different, a varying order of attributes has arrived
2021-03-03 07:27:26 +00:00
}
}
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom
2021-03-03 07:27:26 +00:00
.set_attribute(new_attr.name, new_attr.value, is_namespaced);
}
}
'outer2: for old_attr in old {
for new_attr in new {
if old_attr.name == new_attr.name {
continue 'outer2;
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
}
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
self.dom.remove_attribute(old_attr.name);
2021-03-03 07:27:26 +00:00
}
}
2021-03-03 07:27:26 +00:00
// Diff the given set of old and new children.
//
// The parent must be on top of the change list stack when this function is
// entered:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) {
2021-03-03 07:27:26 +00:00
if new.is_empty() {
if !old.is_empty() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
2021-03-03 07:27:26 +00:00
self.remove_all_children(old);
}
return;
}
2021-03-03 07:27:26 +00:00
if new.len() == 1 {
match (&old.first(), &new[0]) {
(Some(VNode::Text(old_vtext)), VNode::Text(new_vtext))
if old_vtext.text == new_vtext.text =>
{
2021-03-03 07:27:26 +00:00
// Don't take this fast path...
}
2021-06-23 05:44:48 +00:00
// (_, VNode::Text(text)) => {
// // self.dom.commit_traversal();
// log::debug!("using optimized text set");
// self.dom.set_text(text.text);
// return;
// }
2021-06-07 18:14:49 +00:00
// todo: any more optimizations
2021-03-03 07:27:26 +00:00
(_, _) => {}
}
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
if old.is_empty() {
if !new.is_empty() {
2021-06-20 06:16:42 +00:00
// self.dom.commit_traversal();
2021-03-03 07:27:26 +00:00
self.create_and_append_children(new);
}
2021-03-03 07:27:26 +00:00
return;
}
2021-03-03 07:27:26 +00:00
let new_is_keyed = new[0].key().is_some();
let old_is_keyed = old[0].key().is_some();
2021-03-03 07:27:26 +00:00
debug_assert!(
new.iter().all(|n| n.key().is_some() == new_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
debug_assert!(
old.iter().all(|o| o.key().is_some() == old_is_keyed),
"all siblings must be keyed or all siblings must be non-keyed"
);
if new_is_keyed && old_is_keyed {
todo!("Not yet implemented a migration away from temporaries");
// let t = self.dom.next_temporary();
// self.diff_keyed_children(old, new);
// self.dom.set_next_temporary(t);
2021-03-03 07:27:26 +00:00
} else {
self.diff_non_keyed_children(old, new);
}
}
2021-03-03 07:27:26 +00:00
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// When entering this function, the parent must be on top of the change list
// stack:
//
// [... parent]
//
// Upon exiting, the change list stack is in the same state.
2021-06-20 06:16:42 +00:00
fn diff_keyed_children(&self, old: &[VNode<'a>], new: &[VNode<'a>]) {
todo!();
2021-04-01 04:01:42 +00:00
// if cfg!(debug_assertions) {
// let mut keys = fxhash::FxHashSet::default();
// let mut assert_unique_keys = |children: &[VNode]| {
// keys.clear();
// for child in children {
// let key = child.key();
// debug_assert!(
// key.is_some(),
// "if any sibling is keyed, all siblings must be keyed"
// );
// keys.insert(key);
// }
// debug_assert_eq!(
// children.len(),
// keys.len(),
// "keyed siblings must each have a unique key"
// );
// };
// assert_unique_keys(old);
// assert_unique_keys(new);
// }
2021-03-03 07:27:26 +00:00
// First up, we diff all the nodes with the same key at the beginning of the
// children.
//
// `shared_prefix_count` is the count of how many nodes at the start of
// `new` and `old` share the same keys.
let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
// Next, we find out how many of the nodes at the end of the children have
// the same key. We do _not_ diff them yet, since we want to emit the change
// list instructions such that they can be applied in a single pass over the
// DOM. Instead, we just save this information for later.
//
// `shared_suffix_count` is the count of how many nodes at the end of `new`
// and `old` share the same keys.
let shared_suffix_count = old[shared_prefix_count..]
.iter()
.rev()
.zip(new[shared_prefix_count..].iter().rev())
.take_while(|&(old, new)| old.key() == new.key())
.count();
let old_shared_suffix_start = old.len() - shared_suffix_count;
let new_shared_suffix_start = new.len() - shared_suffix_count;
// Ok, we now hopefully have a smaller range of children in the middle
// within which to re-order nodes with the same keys, remove old nodes with
// now-unused keys, and create new nodes with fresh keys.
self.diff_keyed_middle(
&old[shared_prefix_count..old_shared_suffix_start],
&new[shared_prefix_count..new_shared_suffix_start],
shared_prefix_count,
shared_suffix_count,
old_shared_suffix_start,
);
// Finally, diff the nodes at the end of `old` and `new` that share keys.
let old_suffix = &old[old_shared_suffix_start..];
let new_suffix = &new[new_shared_suffix_start..];
debug_assert_eq!(old_suffix.len(), new_suffix.len());
if !old_suffix.is_empty() {
self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
}
}
2021-03-03 07:27:26 +00:00
// Diff the prefix of children in `new` and `old` that share the same keys in
// the same order.
//
// Upon entry of this function, the change list stack must be:
//
// [... parent]
//
// Upon exit, the change list stack is the same.
2021-06-20 06:16:42 +00:00
fn diff_keyed_prefix(&self, old: &[VNode<'a>], new: &[VNode<'a>]) -> KeyedPrefixResult {
todo!()
2021-06-20 06:16:42 +00:00
// self.dom.go_down();
// let mut shared_prefix_count = 0;
// for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() {
// if old.key() != new.key() {
// break;
// }
// self.dom.go_to_sibling(i);
2021-03-03 07:27:26 +00:00
// self.diff_node(old, new);
// shared_prefix_count += 1;
// }
// // If that was all of the old children, then create and append the remaining
// // new children and we're finished.
// if shared_prefix_count == old.len() {
// self.dom.go_up();
// // self.dom.commit_traversal();
// self.create_and_append_children(&new[shared_prefix_count..]);
// return KeyedPrefixResult::Finished;
// }
// // And if that was all of the new children, then remove all of the remaining
// // old children and we're finished.
// if shared_prefix_count == new.len() {
// self.dom.go_to_sibling(shared_prefix_count);
// // self.dom.commit_traversal();
// self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
// return KeyedPrefixResult::Finished;
// }
// self.dom.go_up();
// KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
// The most-general, expensive code path for keyed children diffing.
//
// We find the longest subsequence within `old` of children that are relatively
// ordered the same way in `new` (via finding a longest-increasing-subsequence
// of the old child's index within `new`). The children that are elements of
// this subsequence will remain in place, minimizing the number of DOM moves we
// will have to do.
//
// Upon entry to this function, the change list stack must be:
//
// [... parent]
//
// Upon exit from this function, it will be restored to that same state.
2021-06-20 06:16:42 +00:00
fn diff_keyed_middle(
&self,
2021-03-03 07:27:26 +00:00
old: &[VNode<'a>],
mut new: &[VNode<'a>],
shared_prefix_count: usize,
shared_suffix_count: usize,
old_shared_suffix_start: usize,
) {
todo!()
// // Should have already diffed the shared-key prefixes and suffixes.
// debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
// debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
// // The algorithm below relies upon using `u32::MAX` as a sentinel
// // value, so if we have that many new nodes, it won't work. This
// // check is a bit academic (hence only enabled in debug), since
// // wasm32 doesn't have enough address space to hold that many nodes
// // in memory.
// debug_assert!(new.len() < u32::MAX as usize);
// // Map from each `old` node's key to its index within `old`.
// let mut old_key_to_old_index = FxHashMap::default();
// old_key_to_old_index.reserve(old.len());
// old_key_to_old_index.extend(old.iter().enumerate().map(|(i, o)| (o.key(), i)));
// // The set of shared keys between `new` and `old`.
// let mut shared_keys = FxHashSet::default();
// // Map from each index in `new` to the index of the node in `old` that
// // has the same key.
// let mut new_index_to_old_index = Vec::with_capacity(new.len());
// new_index_to_old_index.extend(new.iter().map(|n| {
// let key = n.key();
// if let Some(&i) = old_key_to_old_index.get(&key) {
// shared_keys.insert(key);
// i
// } else {
// u32::MAX as usize
// }
// }));
// // If none of the old keys are reused by the new children, then we
// // remove all the remaining old children and create the new children
// // afresh.
// if shared_suffix_count == 0 && shared_keys.is_empty() {
// if shared_prefix_count == 0 {
// // self.dom.commit_traversal();
// self.remove_all_children(old);
// } else {
// self.dom.go_down_to_child(shared_prefix_count);
// // self.dom.commit_traversal();
// self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
// }
// self.create_and_append_children(new);
// return;
// }
2021-03-03 07:27:26 +00:00
// // Save each of the old children whose keys are reused in the new
// // children.
// let mut old_index_to_temp = vec![u32::MAX; old.len()];
// let mut start = 0;
// loop {
// let end = (start..old.len())
// .find(|&i| {
// let key = old[i].key();
// !shared_keys.contains(&key)
// })
// .unwrap_or(old.len());
// if end - start > 0 {
// // self.dom.commit_traversal();
// let mut t = self.dom.save_children_to_temporaries(
// shared_prefix_count + start,
// shared_prefix_count + end,
// );
// for i in start..end {
// old_index_to_temp[i] = t;
// t += 1;
// }
// }
// debug_assert!(end <= old.len());
// if end == old.len() {
// break;
// } else {
// start = end + 1;
// }
// }
2021-03-03 07:27:26 +00:00
// // Remove any old children whose keys were not reused in the new
// // children. Remove from the end first so that we don't mess up indices.
// let mut removed_count = 0;
// for (i, old_child) in old.iter().enumerate().rev() {
// if !shared_keys.contains(&old_child.key()) {
// // registry.remove_subtree(old_child);
// // todo
// // self.dom.commit_traversal();
// self.dom.remove_child(i + shared_prefix_count);
// removed_count += 1;
// }
// }
2021-03-03 07:27:26 +00:00
// // If there aren't any more new children, then we are done!
// if new.is_empty() {
// return;
// }
2021-03-03 07:27:26 +00:00
// // The longest increasing subsequence within `new_index_to_old_index`. This
// // is the longest sequence on DOM nodes in `old` that are relatively ordered
// // correctly within `new`. We will leave these nodes in place in the DOM,
// // and only move nodes that are not part of the LIS. This results in the
// // maximum number of DOM nodes left in place, AKA the minimum number of DOM
// // nodes moved.
// let mut new_index_is_in_lis = FxHashSet::default();
// new_index_is_in_lis.reserve(new_index_to_old_index.len());
// let mut predecessors = vec![0; new_index_to_old_index.len()];
// let mut starts = vec![0; new_index_to_old_index.len()];
// longest_increasing_subsequence::lis_with(
// &new_index_to_old_index,
// &mut new_index_is_in_lis,
// |a, b| a < b,
// &mut predecessors,
// &mut starts,
// );
// // Now we will iterate from the end of the new children back to the
// // beginning, diffing old children we are reusing and if they aren't in the
// // LIS moving them to their new destination, or creating new children. Note
// // that iterating in reverse order lets us use `Node.prototype.insertBefore`
// // to move/insert children.
// //
// // But first, we ensure that we have a child on the change list stack that
// // we can `insertBefore`. We handle this once before looping over `new`
// // children, so that we don't have to keep checking on every loop iteration.
// if shared_suffix_count > 0 {
// // There is a shared suffix after these middle children. We will be
// // inserting before that shared suffix, so add the first child of that
// // shared suffix to the change list stack.
// //
// // [... parent]
// self.dom
// .go_down_to_child(old_shared_suffix_start - removed_count);
// // [... parent first_child_of_shared_suffix]
// } else {
// // There is no shared suffix coming after these middle children.
// // Therefore we have to process the last child in `new` and move it to
// // the end of the parent's children if it isn't already there.
// let last_index = new.len() - 1;
// // uhhhh why an unwrap?
// let last = new.last().unwrap();
// // let last = new.last().unwrap_throw();
// new = &new[..new.len() - 1];
// if shared_keys.contains(&last.key()) {
// let old_index = new_index_to_old_index[last_index];
// let temp = old_index_to_temp[old_index];
// // [... parent]
// self.dom.go_down_to_temp_child(temp);
// // [... parent last]
// self.diff_node(&old[old_index], last);
// if new_index_is_in_lis.contains(&last_index) {
// // Don't move it, since it is already where it needs to be.
// } else {
// // self.dom.commit_traversal();
// // [... parent last]
// self.dom.append_child();
// // [... parent]
// self.dom.go_down_to_temp_child(temp);
// // [... parent last]
// }
// } else {
// // self.dom.commit_traversal();
// // [... parent]
// self.create(last);
// // [... parent last]
// self.dom.append_child();
// // [... parent]
// self.dom.go_down_to_reverse_child(0);
// // [... parent last]
// }
// }
2021-03-03 07:27:26 +00:00
// for (new_index, new_child) in new.iter().enumerate().rev() {
// let old_index = new_index_to_old_index[new_index];
// if old_index == u32::MAX as usize {
// debug_assert!(!shared_keys.contains(&new_child.key()));
// // self.dom.commit_traversal();
// // [... parent successor]
// self.create(new_child);
// // [... parent successor new_child]
// self.dom.insert_before();
// // [... parent new_child]
// } else {
// debug_assert!(shared_keys.contains(&new_child.key()));
// let temp = old_index_to_temp[old_index];
// debug_assert_ne!(temp, u32::MAX);
// if new_index_is_in_lis.contains(&new_index) {
// // [... parent successor]
// self.dom.go_to_temp_sibling(temp);
// // [... parent new_child]
// } else {
// // self.dom.commit_traversal();
// // [... parent successor]
// self.dom.push_temporary(temp);
// // [... parent successor new_child]
// self.dom.insert_before();
// // [... parent new_child]
// }
2021-03-03 07:27:26 +00:00
// self.diff_node(&old[old_index], new_child);
// }
// }
2021-03-03 07:27:26 +00:00
// // [... parent child]
// self.dom.go_up();
2021-03-03 07:27:26 +00:00
// [... parent]
}
2021-03-03 07:27:26 +00:00
// Diff the suffix of keyed children that share the same keys in the same order.
//
// The parent must be on the change list stack when we enter this function:
//
// [... parent]
//
// When this function exits, the change list stack remains the same.
2021-06-20 06:16:42 +00:00
fn diff_keyed_suffix(
&self,
2021-03-03 07:27:26 +00:00
old: &[VNode<'a>],
new: &[VNode<'a>],
new_shared_suffix_start: usize,
) {
todo!()
// debug_assert_eq!(old.len(), new.len());
// debug_assert!(!old.is_empty());
// // [... parent]
// self.dom.go_down();
// // [... parent new_child]
// for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() {
// self.dom.go_to_sibling(new_shared_suffix_start + i);
// self.diff_node(old_child, new_child);
// }
2021-03-03 07:27:26 +00:00
// // [... parent]
// self.dom.go_up();
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
2021-06-23 05:44:48 +00:00
fn diff_non_keyed_children(&mut self, old: &'a [VNode<'a>], new: &'a [VNode<'a>]) {
2021-03-03 07:27:26 +00:00
// Handled these cases in `diff_children` before calling this function.
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
2021-03-03 07:27:26 +00:00
// [... parent]
// self.dom.go_down();
// self.dom.push_root()
2021-03-03 07:27:26 +00:00
// [... parent child]
2021-06-23 05:44:48 +00:00
// todo!()
for (i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() {
// [... parent prev_child]
// self.dom.go_to_sibling(i);
// [... parent this_child]
self.dom.push_root(old_child.get_mounted_id().unwrap());
self.diff_node(old_child, new_child);
let old_id = old_child.get_mounted_id().unwrap();
let new_id = new_child.get_mounted_id().unwrap();
log::debug!(
"pushed root. {:?}, {:?}",
old_child.get_mounted_id().unwrap(),
new_child.get_mounted_id().unwrap()
);
if old_id != new_id {
log::debug!("Mismatch: {:?}", new_child);
}
}
2021-03-03 07:27:26 +00:00
// match old.len().cmp(&new.len()) {
// // old.len > new.len -> removing some nodes
// Ordering::Greater => {
// // [... parent prev_child]
// self.dom.go_to_sibling(new.len());
// // [... parent first_child_to_remove]
// // self.dom.commit_traversal();
// // support::remove_self_and_next_siblings(state, &old[new.len()..]);
// self.remove_self_and_next_siblings(&old[new.len()..]);
// // [... parent]
// }
// // old.len < new.len -> adding some nodes
// Ordering::Less => {
// // [... parent last_child]
// self.dom.go_up();
// // [... parent]
// // self.dom.commit_traversal();
// self.create_and_append_children(&new[old.len()..]);
// }
// // old.len == new.len -> no nodes added/removed, but πerhaps changed
// Ordering::Equal => {
// // [... parent child]
// self.dom.go_up();
// // [... parent]
// }
// }
2021-03-03 07:27:26 +00:00
}
// ======================
// Support methods
// ======================
// Remove all of a node's children.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn remove_all_children(&mut self, old: &[VNode<'a>]) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-05-19 14:14:02 +00:00
log::debug!("REMOVING CHILDREN");
2021-03-03 07:27:26 +00:00
for _child in old {
// registry.remove_subtree(child);
}
// Fast way to remove all children: set the node's textContent to an empty
// string.
2021-06-20 06:16:42 +00:00
todo!()
// self.dom.set_inner_text("");
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Create the given children and append them to the parent node.
//
// The parent node must currently be on top of the change list stack:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn create_and_append_children(&mut self, new: &[VNode<'a>]) {
2021-06-20 06:16:42 +00:00
// debug_assert!(self.dom.traversal_is_committed());
2021-03-03 07:27:26 +00:00
for child in new {
// self.create_and_append(node, parent)
self.create(child);
self.dom.append_child();
2021-03-03 07:27:26 +00:00
}
}
// Remove the current child and all of its following siblings.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent child]
//
// After the function returns, the child is no longer on the change list stack:
//
// [... parent]
2021-06-20 06:16:42 +00:00
pub fn remove_self_and_next_siblings(&self, old: &[VNode<'a>]) {
// debug_assert!(self.dom.traversal_is_committed());
2021-05-19 14:14:02 +00:00
for child in old {
if let VNode::Component(vcomp) = child {
2021-06-20 06:16:42 +00:00
// dom
2021-05-19 14:14:02 +00:00
// .create_text_node("placeholder for vcomponent");
todo!()
// let root_id = vcomp.stable_addr.as_ref().borrow().unwrap();
// self.lifecycle_events.push_back(LifeCycleEvent::Remove {
// root_id,
// stable_scope_addr: Rc::downgrade(&vcomp.ass_scope),
// })
2021-05-19 14:14:02 +00:00
// let id = get_id();
// *component.stable_addr.as_ref().borrow_mut() = Some(id);
2021-06-20 06:16:42 +00:00
// self.dom.save_known_root(id);
2021-05-19 14:14:02 +00:00
// let scope = Rc::downgrade(&component.ass_scope);
// self.lifecycle_events.push_back(LifeCycleEvent::Mount {
// caller: Rc::downgrade(&component.caller),
// root_id: id,
// stable_scope_addr: scope,
// });
}
2021-03-03 07:27:26 +00:00
// registry.remove_subtree(child);
}
todo!()
// self.dom.remove_self_and_next_siblings();
}
}
2021-03-03 07:27:26 +00:00
enum KeyedPrefixResult {
// Fast path: we finished diffing all the children just by looking at the
// prefix of shared keys!
Finished,
// There is more diffing work to do. Here is a count of how many children at
// the beginning of `new` and `old` we already processed.
MoreWorkToDo(usize),
}