dioxus/packages/core/src/diff.rs

1370 lines
56 KiB
Rust
Raw Normal View History

2021-06-16 15:19:37 +00:00
//! This module contains the stateful DiffMachine and all methods to diff VNodes, their properties, and their children.
//! The DiffMachine calculates the diffs between the old and new frames, updates the new nodes, and modifies the real dom.
2021-06-16 15:19:37 +00:00
//!
2021-07-12 06:23:46 +00:00
//! ## Notice:
2021-06-27 02:13:57 +00:00
//! The inspiration and code for this module was originally taken from Dodrio (@fitzgen) and then modified to support
//! Components, Fragments, Suspense, SubTree memoization, and additional batching operations.
2021-06-16 15:19:37 +00:00
//!
//! ## Implementation Details:
//!
//! ### IDs for elements
2021-07-12 06:23:46 +00:00
//! --------------------
//! All nodes are addressed by their IDs. The RealDom provides an imperative interface for making changes to these nodes.
2021-06-27 02:13:57 +00:00
//! We don't necessarily require that DOM changes happen instnatly during the diffing process, so the implementor may choose
//! to batch nodes if it is more performant for their application. The expectation is that renderers use a Slotmap for nodes
//! whose keys can be converted to u64 on FFI boundaries.
//!
//! When new nodes are created through `render`, they won't know which real node they correspond to. During diffing, we
//! always make sure to copy over the ID. If we don't do this properly, the ElementId will be populated incorrectly and
//! brick the user's page.
//!
//! ## Subtree Memoization
2021-07-12 06:23:46 +00:00
//! -----------------------
//! We also employ "subtree memoization" which saves us from having to check trees which take no dynamic content. We can
//! detect if a subtree is "static" by checking if its children are "static". Since we dive into the tree depth-first, the
//! calls to "create" propogate this information upwards. Structures like the one below are entirely static:
//! ```rust
//! rsx!( div { class: "hello world", "this node is entirely static" } )
//! ```
//! Because the subtrees won't be diffed, their "real node" data will be stale (invalid), so its up to the reconciler to
//! track nodes created in a scope and clean up all relevant data. Support for this is currently WIP
//!
2021-07-12 06:23:46 +00:00
//! ## Bloom Filter and Heuristics
//! ------------------------------
//! For all components, we employ some basic heuristics to speed up allocations and pre-size bump arenas. The heuristics are
//! currently very rough, but will get better as time goes on. For FFI, we recommend using a bloom filter to cache strings.
//!
//!
2021-07-12 06:23:46 +00:00
//! ## Garbage Collection
//! ---------------------
2021-07-23 21:03:51 +00:00
//! Dioxus uses a passive garbage collection system to clean up old nodes once the work has been completed. This garabge
//! collection is done internally once the main diffing work is complete. After the "garbage" is collected, Dioxus will then
//! start to re-use old keys for new nodes. This results in a passive memory management system that is very efficient.
2021-02-15 04:39:46 +00:00
//!
//! The IDs used by the key/map are just an index into a vec. This means that Dioxus will drive the key allocation strategy
//! so the client only needs to maintain a simple list of nodes. By default, Dioxus will not manually clean up old nodes
//! for the client. As new nodes are created, old nodes will be over-written.
2021-02-15 04:39:46 +00:00
//!
2021-06-16 15:19:37 +00:00
//! Further Reading and Thoughts
//! ----------------------------
2021-03-03 07:27:26 +00:00
//! There are more ways of increasing diff performance here that are currently not implemented.
//! More info on how to improve this diffing algorithm:
//! - https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
2021-06-16 15:19:37 +00:00
use crate::{arena::SharedResources, innerlude::*};
use fxhash::{FxHashMap, FxHashSet};
2021-07-21 21:05:48 +00:00
use smallvec::{smallvec, SmallVec};
2021-03-11 17:27:01 +00:00
use std::{any::Any, borrow::Borrow};
2021-03-03 07:27:26 +00:00
/// Instead of having handles directly over nodes, Dioxus uses simple u32 as node IDs.
/// The expectation is that the underlying renderer will mainain their Nodes in vec where the ids are the index. This allows
/// for a form of passive garbage collection where nodes aren't immedately cleaned up.
2021-06-29 02:22:11 +00:00
///
/// The "RealDom" abstracts over the... real dom. The RealDom trait assumes that the renderer maintains a stack of real
/// nodes as the diffing algorithm descenes through the tree. This means that whatever is on top of the stack will receive
/// any modifications that follow. This technique enables the diffing algorithm to avoid directly handling or storing any
/// target-specific Node type as well as easily serializing the edits to be sent over a network or IPC connection.
pub trait RealDom<'a> {
fn raw_node_as_any(&self) -> &mut dyn Any;
}
2021-07-23 21:03:51 +00:00
pub struct DiffMachine<'real, 'bump> {
pub real_dom: &'real dyn RealDom<'bump>,
pub vdom: &'bump SharedResources,
pub edits: DomEditor<'real, 'bump>,
2021-07-23 21:03:51 +00:00
pub scheduled_garbage: Vec<&'bump VNode<'bump>>,
2021-07-21 21:05:48 +00:00
pub cur_idxs: SmallVec<[ScopeId; 5]>,
pub diffed: FxHashSet<ScopeId>,
pub seen_nodes: FxHashSet<ScopeId>,
}
2021-02-12 21:11:33 +00:00
2021-07-23 21:03:51 +00:00
impl<'r, 'b> DiffMachine<'r, 'b> {
pub fn get_scope_mut(&mut self, id: &ScopeId) -> Option<&'b mut Scope> {
// ensure we haven't seen this scope before
// if we have, then we're trying to alias it, which is not allowed
debug_assert!(!self.seen_nodes.contains(id));
2021-07-23 21:03:51 +00:00
unsafe { self.vdom.get_scope_mut(*id) }
}
pub fn get_scope(&mut self, id: &ScopeId) -> Option<&'b Scope> {
// ensure we haven't seen this scope before
// if we have, then we're trying to alias it, which is not allowed
2021-07-23 21:03:51 +00:00
unsafe { self.vdom.get_scope(*id) }
}
}
2021-07-23 21:03:51 +00:00
impl<'real, 'bump> DiffMachine<'real, 'bump> {
2021-06-20 06:16:42 +00:00
pub fn new(
edits: &'real mut Vec<DomEdit<'bump>>,
2021-07-23 21:03:51 +00:00
dom: &'real dyn RealDom<'bump>,
cur_idx: ScopeId,
shared: &'bump SharedResources,
2021-06-20 06:16:42 +00:00
) -> Self {
2021-02-15 04:39:46 +00:00
Self {
real_dom: dom,
2021-07-15 04:40:37 +00:00
edits: DomEditor::new(edits),
2021-07-21 21:05:48 +00:00
cur_idxs: smallvec![cur_idx],
vdom: shared,
2021-07-23 21:03:51 +00:00
scheduled_garbage: vec![],
2021-02-15 04:39:46 +00:00
diffed: FxHashSet::default(),
2021-06-07 18:14:49 +00:00
seen_nodes: FxHashSet::default(),
}
}
2021-07-12 06:23:46 +00:00
// Diff the `old` node with the `new` node. Emits instructions to modify a
// physical DOM node that reflects `old` into something that reflects `new`.
//
2021-07-12 06:23:46 +00:00
// the real stack should be what it is coming in and out of this function (ideally empty)
//
2021-07-12 06:23:46 +00:00
// each function call assumes the stack is fresh (empty).
pub fn diff_node(&mut self, old_node: &'bump VNode<'bump>, new_node: &'bump VNode<'bump>) {
let root = old_node
.dom_id
.get()
.expect("Should not be diffing old nodes that were never assigned");
2021-07-12 22:19:27 +00:00
match (&old_node.kind, &new_node.kind) {
2021-07-05 05:11:49 +00:00
// Handle the "sane" cases first.
// The rsx and html macros strongly discourage dynamic lists not encapsulated by a "Fragment".
// So the sane (and fast!) cases are where the virtual structure stays the same and is easily diffable.
2021-07-12 22:19:27 +00:00
(VNodeKind::Text(old), VNodeKind::Text(new)) => {
2021-07-05 05:11:49 +00:00
if old.text != new.text {
self.edits.push_root(root);
2021-07-05 05:11:49 +00:00
log::debug!("Text has changed {}, {}", old.text, new.text);
self.edits.set_text(new.text);
self.edits.pop();
2021-03-14 00:11:06 +00:00
}
2021-07-13 03:44:20 +00:00
new_node.dom_id.set(Some(root));
2021-07-05 05:11:49 +00:00
}
2021-03-05 20:02:36 +00:00
2021-07-12 22:19:27 +00:00
(VNodeKind::Element(old), VNodeKind::Element(new)) => {
2021-07-05 05:11:49 +00:00
// If the element type is completely different, the element needs to be re-rendered completely
// This is an optimization React makes due to how users structure their code
//
// In Dioxus, this is less likely to occur unless through a fragment
if new.tag_name != old.tag_name || new.namespace != old.namespace {
self.edits.push_root(root);
let meta = self.create(new_node);
self.edits.replace_with(meta.added_to_stack);
2021-07-23 21:03:51 +00:00
self.scheduled_garbage.push(old_node);
self.edits.pop();
2021-07-05 05:11:49 +00:00
return;
}
2021-06-07 18:14:49 +00:00
new_node.dom_id.set(Some(root));
2021-07-12 06:23:46 +00:00
// push it just in case
// TODO: remove this - it clogs up things and is inefficient
self.edits.push_root(root);
2021-07-05 05:11:49 +00:00
self.diff_listeners(old.listeners, new.listeners);
self.diff_attr(old.attributes, new.attributes, new.namespace);
self.diff_children(old.children, new.children);
self.edits.pop();
2021-07-05 05:11:49 +00:00
}
2021-03-03 07:27:26 +00:00
2021-07-12 22:19:27 +00:00
(VNodeKind::Component(old), VNodeKind::Component(new)) => {
2021-07-05 05:11:49 +00:00
log::warn!("diffing components? {:#?}", new.user_fc);
if old.user_fc == new.user_fc {
// Make sure we're dealing with the same component (by function pointer)
2021-07-21 21:05:48 +00:00
self.cur_idxs.push(old.ass_scope.get().unwrap());
2021-07-05 05:11:49 +00:00
// Make sure the new component vnode is referencing the right scope id
let scope_addr = old.ass_scope.get().unwrap();
new.ass_scope.set(Some(scope_addr));
2021-07-05 05:11:49 +00:00
// make sure the component's caller function is up to date
let scope = self.get_scope_mut(&scope_addr).unwrap();
scope.caller = new.caller.clone();
// ack - this doesn't work on its own!
2021-07-05 05:11:49 +00:00
scope.update_children(new.children);
2021-07-05 05:11:49 +00:00
// React doesn't automatically memoize, but we do.
let should_render = match old.comparator {
Some(comparator) => comparator(new),
None => true,
};
if should_render {
scope.run_scope().unwrap();
self.diff_node(scope.old_frame(), scope.next_frame());
} else {
//
}
2021-07-21 21:05:48 +00:00
self.cur_idxs.pop();
self.seen_nodes.insert(scope_addr);
2021-07-05 05:11:49 +00:00
} else {
// this seems to be a fairy common code path that we could
let mut old_iter = RealChildIterator::new(old_node, &self.vdom);
let first = old_iter
.next()
.expect("Components should generate a placeholder root");
// remove any leftovers
for to_remove in old_iter {
2021-07-23 21:03:51 +00:00
self.edits.push_root(to_remove.element_id().unwrap());
self.edits.remove();
}
2021-06-03 14:42:28 +00:00
// seems like we could combine this into a single instruction....
2021-07-23 21:03:51 +00:00
self.edits.push_root(first.element_id().unwrap());
let meta = self.create(new_node);
self.edits.replace_with(meta.added_to_stack);
2021-07-23 21:03:51 +00:00
self.scheduled_garbage.push(old_node);
self.edits.pop();
2021-07-05 05:11:49 +00:00
// Wipe the old one and plant the new one
let old_scope = old.ass_scope.get().unwrap();
self.destroy_scopes(old_scope);
2021-06-26 07:06:29 +00:00
}
2021-07-05 05:11:49 +00:00
}
2021-07-12 22:19:27 +00:00
(VNodeKind::Fragment(old), VNodeKind::Fragment(new)) => {
2021-07-05 05:11:49 +00:00
// This is the case where options or direct vnodes might be used.
// In this case, it's faster to just skip ahead to their diff
if old.children.len() == 1 && new.children.len() == 1 {
self.diff_node(&old.children[0], &new.children[0]);
2021-07-05 05:11:49 +00:00
return;
}
2021-06-16 15:19:37 +00:00
2021-07-05 05:11:49 +00:00
// Diff using the approach where we're looking for added or removed nodes.
if old.children.len() != new.children.len() {}
2021-06-27 02:13:57 +00:00
2021-07-05 05:11:49 +00:00
// Diff where we think the elements are the same
if old.children.len() == new.children.len() {}
2021-06-27 02:13:57 +00:00
2021-07-05 05:11:49 +00:00
self.diff_children(old.children, new.children);
2021-06-03 14:42:28 +00:00
}
2021-07-12 06:23:46 +00:00
// The strategy here is to pick the first possible node from the previous set and use that as our replace with root
//
2021-07-12 06:23:46 +00:00
// We also walk the "real node" list to make sure all latent roots are claened up
// This covers the case any time a fragment or component shows up with pretty much anything else
//
// This likely isn't the fastest way to go about replacing one node with a virtual node, but the "insane" cases
// are pretty rare. IE replacing a list (component or fragment) with a single node.
2021-07-12 06:23:46 +00:00
(
2021-07-12 22:19:27 +00:00
VNodeKind::Component(_)
| VNodeKind::Fragment(_)
| VNodeKind::Text(_)
| VNodeKind::Element(_),
VNodeKind::Component(_)
| VNodeKind::Fragment(_)
| VNodeKind::Text(_)
| VNodeKind::Element(_),
2021-07-12 06:23:46 +00:00
) => {
// Choose the node to use as the placeholder for replacewith
let back_node_id = match old_node.kind {
// We special case these two types to avoid allocating the small-vecs
VNodeKind::Element(_) | VNodeKind::Text(_) => root,
2021-07-12 06:23:46 +00:00
_ => {
let mut old_iter = RealChildIterator::new(old_node, &self.vdom);
2021-07-12 06:23:46 +00:00
let back_node = old_iter
.next()
.expect("Empty fragments should generate a placeholder.");
// remove any leftovers
for to_remove in old_iter {
2021-07-23 21:03:51 +00:00
self.edits.push_root(to_remove.element_id().unwrap());
self.edits.remove();
2021-07-12 06:23:46 +00:00
}
2021-07-05 05:11:49 +00:00
2021-07-23 21:03:51 +00:00
back_node.element_id().unwrap()
2021-07-12 06:23:46 +00:00
}
};
// replace the placeholder or first node with the nodes generated from the "new"
self.edits.push_root(back_node_id);
2021-07-12 06:23:46 +00:00
let meta = self.create(new_node);
self.edits.replace_with(meta.added_to_stack);
// todo use the is_static metadata to update this subtree
}
2021-07-12 06:23:46 +00:00
// TODO
2021-07-15 04:40:37 +00:00
(VNodeKind::Suspended { node }, new) => todo!(),
(old, VNodeKind::Suspended { .. }) => {
// a node that was once real is now suspended
//
}
}
2021-03-03 07:27:26 +00:00
}
}
// When we create new nodes, we need to propagate some information back up the call chain.
// This gives the caller some information on how to handle things like insertins, appending, and subtree discarding.
pub struct CreateMeta {
pub is_static: bool,
pub added_to_stack: u32,
}
impl CreateMeta {
fn new(is_static: bool, added_to_tack: u32) -> Self {
Self {
is_static,
added_to_stack: added_to_tack,
}
}
}
2021-07-23 21:03:51 +00:00
impl<'real, 'bump> DiffMachine<'real, 'bump> {
// Emit instructions to create the given virtual node.
//
// The change list stack may have any shape upon entering this function:
//
// [...]
//
// When this function returns, the new node is on top of the change list stack:
//
// [... node]
pub fn create(&mut self, node: &'bump VNode<'bump>) -> CreateMeta {
log::warn!("Creating node! ... {:#?}", node);
2021-07-12 22:19:27 +00:00
match &node.kind {
VNodeKind::Text(text) => {
let real_id = self.vdom.reserve_node();
self.edits.create_text_node(text.text, real_id);
node.dom_id.set(Some(real_id));
2021-07-13 20:48:11 +00:00
CreateMeta::new(text.is_static, 1)
2021-03-11 17:27:01 +00:00
}
2021-07-12 22:19:27 +00:00
VNodeKind::Element(el) => {
// we have the potential to completely eliminate working on this node in the future(!)
//
// This can only be done if all of the elements properties (attrs, children, listeners, etc) are static
// While creating these things, keep track if we can memoize this element.
// At the end, we'll set this flag on the element to skip it
let mut is_static: bool = true;
let VElement {
tag_name,
listeners,
attributes,
children,
namespace,
2021-07-13 20:48:47 +00:00
static_attrs: _,
static_children: _,
static_listeners: _,
} = el;
let real_id = self.vdom.reserve_node();
if let Some(namespace) = namespace {
self.edits
.create_element(tag_name, Some(namespace), real_id)
2021-03-11 17:27:01 +00:00
} else {
self.edits.create_element(tag_name, None, real_id)
};
node.dom_id.set(Some(real_id));
2021-03-11 17:27:01 +00:00
2021-06-23 05:44:48 +00:00
listeners.iter().enumerate().for_each(|(idx, listener)| {
log::info!("setting listener id to {:#?}", real_id);
listener.mounted_node.set(Some(real_id));
self.edits
2021-06-23 05:44:48 +00:00
.new_event_listener(listener.event, listener.scope, idx, real_id);
// if the node has an event listener, then it must be visited ?
is_static = false;
2021-03-11 17:27:01 +00:00
});
for attr in *attributes {
is_static = is_static && attr.is_static;
self.edits
.set_attribute(&attr.name, &attr.value, *namespace);
2021-03-11 17:27:01 +00:00
}
// Fast path: if there is a single text child, it is faster to
// create-and-append the text node all at once via setting the
// parent's `textContent` in a single change list instruction than
// to emit three instructions to (1) create a text node, (2) set its
// text content, and finally (3) append the text node to this
// parent.
2021-06-27 02:13:57 +00:00
//
// Notice: this is a web-specific optimization and may be changed in the future
//
// TODO move over
// if children.len() == 1 {
// if let VNodeKind::Text(text) = &children[0].kind {
// self.edits.set_text(text.text);
// return CreateMeta::new(is_static, 1);
// }
// }
2021-03-11 17:27:01 +00:00
for child in *children {
let child_meta = self.create(child);
is_static = is_static && child_meta.is_static;
// append whatever children were generated by this call
self.edits.append_children(child_meta.added_to_stack);
2021-03-11 17:27:01 +00:00
}
// if is_static {
// log::debug!("created a static node {:#?}", node);
// } else {
// log::debug!("created a dynamic node {:#?}", node);
// }
2021-06-07 18:14:49 +00:00
2021-07-12 22:19:27 +00:00
// el_is_static.set(is_static);
CreateMeta::new(is_static, 1)
}
2021-06-07 18:14:49 +00:00
2021-07-12 22:19:27 +00:00
VNodeKind::Component(vcomponent) => {
2021-06-07 18:14:49 +00:00
log::debug!("Mounting a new component");
let caller = vcomponent.caller.clone();
2021-06-07 18:14:49 +00:00
2021-07-21 21:05:48 +00:00
let parent_idx = self.cur_idxs.last().unwrap().clone();
2021-06-08 18:00:29 +00:00
2021-06-07 18:14:49 +00:00
// Insert a new scope into our component list
let new_idx = self.vdom.insert_scope_with_key(|new_idx| {
let parent_scope = self.get_scope(&parent_idx).unwrap();
let height = parent_scope.height + 1;
Scope::new(
caller,
new_idx,
Some(parent_idx),
height,
vcomponent.children,
self.vdom.clone(),
)
});
2021-06-07 18:14:49 +00:00
// This code is supposed to insert the new idx into the parent's descendent list, but it doesn't really work.
// This is mostly used for cleanup - to remove old scopes when components are destroyed.
// TODO
//
// self.components
// .try_get_mut(idx)
// .unwrap()
// .descendents
// .borrow_mut()
// .insert(idx);
// TODO: abstract this unsafe into the arena abstraction
2021-07-23 21:03:51 +00:00
let new_component = self.get_scope_mut(&new_idx).unwrap();
2021-06-07 18:14:49 +00:00
// Actually initialize the caller's slot with the right address
2021-07-21 21:05:48 +00:00
vcomponent.ass_scope.set(Some(new_idx));
2021-06-07 18:14:49 +00:00
// Run the scope for one iteration to initialize it
new_component.run_scope().unwrap();
// TODO: we need to delete (IE relcaim this node, otherwise the arena will grow infinitely)
2021-07-12 06:23:46 +00:00
let nextnode = new_component.next_frame();
2021-07-21 21:05:48 +00:00
self.cur_idxs.push(new_idx);
2021-07-12 06:23:46 +00:00
let meta = self.create(nextnode);
2021-07-21 21:05:48 +00:00
self.cur_idxs.pop();
2021-06-07 18:14:49 +00:00
// Finally, insert this node as a seen node.
2021-07-21 21:05:48 +00:00
self.seen_nodes.insert(new_idx);
2021-07-12 06:23:46 +00:00
CreateMeta::new(vcomponent.is_static, meta.added_to_stack)
2021-03-11 17:27:01 +00:00
}
2021-06-07 18:14:49 +00:00
// Fragments are the only nodes that can contain dynamic content (IE through curlies or iterators).
// We can never ignore their contents, so the prescence of a fragment indicates that we need always diff them.
2021-07-12 06:23:46 +00:00
// Fragments will just put all their nodes onto the stack after creation
2021-07-12 22:19:27 +00:00
VNodeKind::Fragment(frag) => {
let mut nodes_added = 0;
for child in frag.children.iter().rev() {
// different types of nodes will generate different amounts on the stack
// nested fragments will spew a ton of nodes onto the stack
// TODO: make sure that our order (.rev) makes sense in a nested situation
let new_meta = self.create(child);
nodes_added += new_meta.added_to_stack;
2021-06-08 18:00:29 +00:00
}
2021-07-12 06:23:46 +00:00
log::info!("This fragment added {} nodes to the stack", nodes_added);
// Never ignore
CreateMeta::new(false, nodes_added)
2021-06-08 18:00:29 +00:00
}
2021-07-15 04:40:37 +00:00
VNodeKind::Suspended { node: real_node } => {
let id = self.vdom.reserve_node();
self.edits.create_placeholder(id);
node.dom_id.set(Some(id));
real_node.set(Some(id));
CreateMeta::new(false, 1)
2021-06-03 14:42:28 +00:00
}
2021-03-11 17:27:01 +00:00
}
}
}
2021-03-11 17:27:01 +00:00
2021-07-23 21:03:51 +00:00
impl<'a, 'bump> DiffMachine<'a, 'bump> {
2021-06-07 18:14:49 +00:00
/// Destroy a scope and all of its descendents.
///
/// Calling this will run the destuctors on all hooks in the tree.
/// It will also add the destroyed nodes to the `seen_nodes` cache to prevent them from being renderered.
fn destroy_scopes(&mut self, old_scope: ScopeId) {
2021-06-07 18:14:49 +00:00
let mut nodes_to_delete = vec![old_scope];
let mut scopes_to_explore = vec![old_scope];
// explore the scope tree breadth first
while let Some(scope_id) = scopes_to_explore.pop() {
// If we're planning on deleting this node, then we don't need to both rendering it
self.seen_nodes.insert(scope_id);
let scope = self.get_scope(&scope_id).unwrap();
2021-06-07 18:14:49 +00:00
for child in scope.descendents.borrow().iter() {
// Add this node to be explored
scopes_to_explore.push(child.clone());
// Also add it for deletion
nodes_to_delete.push(child.clone());
}
}
// Delete all scopes that we found as part of this subtree
for node in nodes_to_delete {
log::debug!("Removing scope {:#?}", node);
let _scope = self.vdom.try_remove(node).unwrap();
2021-06-07 18:14:49 +00:00
// do anything we need to do to delete the scope
// I think we need to run the destructors on the hooks
// TODO
}
}
2021-03-03 07:27:26 +00:00
// Diff event listeners between `old` and `new`.
//
// The listeners' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_listeners(&mut self, old: &[Listener<'_>], new: &[Listener<'_>]) {
2021-03-03 07:27:26 +00:00
if !old.is_empty() || !new.is_empty() {
// self.edits.commit_traversal();
2021-03-03 07:27:26 +00:00
}
2021-06-23 05:44:48 +00:00
// TODO
// what does "diffing listeners" even mean?
2021-03-03 07:27:26 +00:00
2021-03-11 00:42:31 +00:00
'outer1: for (_l_idx, new_l) in new.iter().enumerate() {
2021-03-16 15:03:59 +00:00
// go through each new listener
// find its corresponding partner in the old list
// if any characteristics changed, remove and then re-add
// if nothing changed, then just move on
2021-07-13 20:48:47 +00:00
let _event_type = new_l.event;
2021-03-03 07:27:26 +00:00
for old_l in old {
if new_l.event == old_l.event {
2021-06-23 05:44:48 +00:00
new_l.mounted_node.set(old_l.mounted_node.get());
// if new_l.id != old_l.id {
// self.edits.remove_event_listener(event_type);
// // TODO! we need to mess with events and assign them by ElementId
// // self.edits
2021-06-23 05:44:48 +00:00
// // .update_event_listener(event_type, new_l.scope, new_l.id)
// }
2021-03-16 15:03:59 +00:00
2021-03-03 07:27:26 +00:00
continue 'outer1;
}
}
// self.edits
2021-06-23 05:44:48 +00:00
// .new_event_listener(event_type, new_l.scope, new_l.id);
2021-03-03 07:27:26 +00:00
}
2021-06-23 05:44:48 +00:00
// 'outer2: for old_l in old {
// for new_l in new {
// if new_l.event == old_l.event {
// continue 'outer2;
// }
// }
// self.edits.remove_event_listener(old_l.event);
2021-06-23 05:44:48 +00:00
// }
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Diff a node's attributes.
//
// The attributes' node must be on top of the change list stack:
//
// [... node]
//
// The change list stack is left unchanged.
fn diff_attr(
&mut self,
old: &'bump [Attribute<'bump>],
new: &'bump [Attribute<'bump>],
namespace: Option<&'static str>,
) {
2021-03-03 07:27:26 +00:00
// Do O(n^2) passes to add/update and remove attributes, since
// there are almost always very few attributes.
2021-06-07 18:14:49 +00:00
//
// The "fast" path is when the list of attributes name is identical and in the same order
// With the Rsx and Html macros, this will almost always be the case
2021-03-03 07:27:26 +00:00
'outer: for new_attr in new {
2021-07-12 22:19:27 +00:00
if new_attr.is_volatile {
// self.edits.commit_traversal();
self.edits
2021-06-29 02:22:11 +00:00
.set_attribute(new_attr.name, new_attr.value, namespace);
2021-03-03 07:27:26 +00:00
} else {
for old_attr in old {
if old_attr.name == new_attr.name {
if old_attr.value != new_attr.value {
// self.edits.commit_traversal();
self.edits
2021-06-29 02:22:11 +00:00
.set_attribute(new_attr.name, new_attr.value, namespace);
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
continue 'outer;
2021-06-07 18:14:49 +00:00
} else {
// names are different, a varying order of attributes has arrived
2021-03-03 07:27:26 +00:00
}
}
// self.edits.commit_traversal();
self.edits
2021-06-29 02:22:11 +00:00
.set_attribute(new_attr.name, new_attr.value, namespace);
2021-03-03 07:27:26 +00:00
}
}
'outer2: for old_attr in old {
for new_attr in new {
if old_attr.name == new_attr.name {
continue 'outer2;
2021-02-15 04:39:46 +00:00
}
2021-03-03 07:27:26 +00:00
}
// self.edits.commit_traversal();
self.edits.remove_attribute(old_attr.name);
2021-03-03 07:27:26 +00:00
}
}
2021-03-03 07:27:26 +00:00
// Diff the given set of old and new children.
//
// The parent must be on top of the change list stack when this function is
// entered:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
2021-03-03 07:27:26 +00:00
if new.is_empty() {
if !old.is_empty() {
// self.edits.commit_traversal();
2021-03-03 07:27:26 +00:00
self.remove_all_children(old);
}
return;
}
2021-03-03 07:27:26 +00:00
if new.len() == 1 {
match (&old.first(), &new[0]) {
2021-07-12 22:19:27 +00:00
// (Some(VNodeKind::Text(old_vtext)), VNodeKind::Text(new_vtext))
// if old_vtext.text == new_vtext.text =>
// {
// // Don't take this fast path...
// }
2021-07-12 22:19:27 +00:00
// (_, VNodeKind::Text(text)) => {
// // self.edits.commit_traversal();
2021-06-23 05:44:48 +00:00
// log::debug!("using optimized text set");
// self.edits.set_text(text.text);
2021-06-23 05:44:48 +00:00
// return;
// }
2021-06-07 18:14:49 +00:00
// todo: any more optimizations
2021-03-03 07:27:26 +00:00
(_, _) => {}
}
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
if old.is_empty() {
if !new.is_empty() {
// self.edits.commit_traversal();
2021-03-03 07:27:26 +00:00
self.create_and_append_children(new);
}
2021-03-03 07:27:26 +00:00
return;
}
2021-07-12 22:19:27 +00:00
let new_is_keyed = new[0].key.is_some();
let old_is_keyed = old[0].key.is_some();
2021-03-03 07:27:26 +00:00
debug_assert!(
2021-07-12 22:19:27 +00:00
new.iter().all(|n| n.key.is_some() == new_is_keyed),
2021-03-03 07:27:26 +00:00
"all siblings must be keyed or all siblings must be non-keyed"
);
debug_assert!(
2021-07-12 22:19:27 +00:00
old.iter().all(|o| o.key.is_some() == old_is_keyed),
2021-03-03 07:27:26 +00:00
"all siblings must be keyed or all siblings must be non-keyed"
);
if new_is_keyed && old_is_keyed {
2021-07-05 05:11:49 +00:00
log::warn!("using the wrong approach");
self.diff_non_keyed_children(old, new);
// todo!("Not yet implemented a migration away from temporaries");
// let t = self.edits.next_temporary();
// self.diff_keyed_children(old, new);
// self.edits.set_next_temporary(t);
2021-03-03 07:27:26 +00:00
} else {
// log::debug!("diffing non keyed children");
2021-03-03 07:27:26 +00:00
self.diff_non_keyed_children(old, new);
}
}
2021-03-03 07:27:26 +00:00
// Diffing "keyed" children.
//
// With keyed children, we care about whether we delete, move, or create nodes
// versus mutate existing nodes in place. Presumably there is some sort of CSS
// transition animation that makes the virtual DOM diffing algorithm
// observable. By specifying keys for nodes, we know which virtual DOM nodes
// must reuse (or not reuse) the same physical DOM nodes.
//
// This is loosely based on Inferno's keyed patching implementation. However, we
// have to modify the algorithm since we are compiling the diff down into change
// list instructions that will be executed later, rather than applying the
// changes to the DOM directly as we compare virtual DOMs.
//
// https://github.com/infernojs/inferno/blob/36fd96/packages/inferno/src/DOM/patching.ts#L530-L739
//
// When entering this function, the parent must be on top of the change list
// stack:
//
// [... parent]
//
// Upon exiting, the change list stack is in the same state.
2021-07-23 21:03:51 +00:00
fn diff_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
2021-06-27 02:13:57 +00:00
if cfg!(debug_assertions) {
let mut keys = fxhash::FxHashSet::default();
let mut assert_unique_keys = |children: &'bump [VNode<'bump>]| {
2021-06-27 02:13:57 +00:00
keys.clear();
for child in children {
2021-07-12 22:19:27 +00:00
let key = child.key;
2021-06-27 02:13:57 +00:00
debug_assert!(
key.is_some(),
"if any sibling is keyed, all siblings must be keyed"
);
keys.insert(key);
}
debug_assert_eq!(
children.len(),
keys.len(),
"keyed siblings must each have a unique key"
);
};
assert_unique_keys(old);
assert_unique_keys(new);
}
2021-03-03 07:27:26 +00:00
// First up, we diff all the nodes with the same key at the beginning of the
// children.
//
// `shared_prefix_count` is the count of how many nodes at the start of
// `new` and `old` share the same keys.
let shared_prefix_count = match self.diff_keyed_prefix(old, new) {
KeyedPrefixResult::Finished => return,
KeyedPrefixResult::MoreWorkToDo(count) => count,
};
// Next, we find out how many of the nodes at the end of the children have
// the same key. We do _not_ diff them yet, since we want to emit the change
// list instructions such that they can be applied in a single pass over the
// DOM. Instead, we just save this information for later.
//
// `shared_suffix_count` is the count of how many nodes at the end of `new`
// and `old` share the same keys.
let shared_suffix_count = old[shared_prefix_count..]
.iter()
.rev()
.zip(new[shared_prefix_count..].iter().rev())
2021-07-12 22:19:27 +00:00
.take_while(|&(old, new)| old.key == new.key)
2021-03-03 07:27:26 +00:00
.count();
let old_shared_suffix_start = old.len() - shared_suffix_count;
let new_shared_suffix_start = new.len() - shared_suffix_count;
// Ok, we now hopefully have a smaller range of children in the middle
// within which to re-order nodes with the same keys, remove old nodes with
// now-unused keys, and create new nodes with fresh keys.
self.diff_keyed_middle(
&old[shared_prefix_count..old_shared_suffix_start],
&new[shared_prefix_count..new_shared_suffix_start],
shared_prefix_count,
shared_suffix_count,
old_shared_suffix_start,
);
// Finally, diff the nodes at the end of `old` and `new` that share keys.
let old_suffix = &old[old_shared_suffix_start..];
let new_suffix = &new[new_shared_suffix_start..];
debug_assert_eq!(old_suffix.len(), new_suffix.len());
if !old_suffix.is_empty() {
self.diff_keyed_suffix(old_suffix, new_suffix, new_shared_suffix_start)
}
}
2021-03-03 07:27:26 +00:00
// Diff the prefix of children in `new` and `old` that share the same keys in
// the same order.
//
// Upon entry of this function, the change list stack must be:
//
// [... parent]
//
// Upon exit, the change list stack is the same.
fn diff_keyed_prefix(
2021-07-23 21:03:51 +00:00
&mut self,
old: &'bump [VNode<'bump>],
new: &'bump [VNode<'bump>],
) -> KeyedPrefixResult {
// self.edits.go_down();
2021-07-23 21:03:51 +00:00
let mut shared_prefix_count = 0;
2021-07-23 21:03:51 +00:00
for (i, (old, new)) in old.iter().zip(new.iter()).enumerate() {
// abort early if we finally run into nodes with different keys
if old.key() != new.key() {
break;
}
2021-03-03 07:27:26 +00:00
2021-07-23 21:03:51 +00:00
// self.edits.go_to_sibling(i);
2021-07-23 21:03:51 +00:00
self.diff_node(old, new);
2021-07-23 21:03:51 +00:00
shared_prefix_count += 1;
}
2021-07-23 21:03:51 +00:00
// If that was all of the old children, then create and append the remaining
// new children and we're finished.
if shared_prefix_count == old.len() {
// self.edits.go_up();
// self.edits.commit_traversal();
self.create_and_append_children(&new[shared_prefix_count..]);
return KeyedPrefixResult::Finished;
}
2021-07-23 21:03:51 +00:00
// And if that was all of the new children, then remove all of the remaining
// old children and we're finished.
if shared_prefix_count == new.len() {
// self.edits.go_to_sibling(shared_prefix_count);
// self.edits.commit_traversal();
self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
return KeyedPrefixResult::Finished;
}
//
// self.edits.go_up();
2021-07-23 21:03:51 +00:00
KeyedPrefixResult::MoreWorkToDo(shared_prefix_count)
2021-02-15 04:39:46 +00:00
}
2021-07-12 06:23:46 +00:00
// Remove all of a node's children.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn remove_all_children(&mut self, old: &'bump [VNode<'bump>]) {
// debug_assert!(self.edits.traversal_is_committed());
2021-07-12 06:23:46 +00:00
log::debug!("REMOVING CHILDREN");
for _child in old {
// registry.remove_subtree(child);
}
// Fast way to remove all children: set the node's textContent to an empty
// string.
todo!()
// self.edits.set_inner_text("");
2021-07-12 06:23:46 +00:00
}
// Create the given children and append them to the parent node.
//
// The parent node must currently be on top of the change list stack:
//
// [... parent]
//
// When this function returns, the change list stack is in the same state.
pub fn create_and_append_children(&mut self, new: &'bump [VNode<'bump>]) {
for child in new {
let meta = self.create(child);
self.edits.append_children(meta.added_to_stack);
2021-07-12 06:23:46 +00:00
}
}
2021-03-03 07:27:26 +00:00
// The most-general, expensive code path for keyed children diffing.
//
// We find the longest subsequence within `old` of children that are relatively
// ordered the same way in `new` (via finding a longest-increasing-subsequence
// of the old child's index within `new`). The children that are elements of
// this subsequence will remain in place, minimizing the number of DOM moves we
// will have to do.
//
// Upon entry to this function, the change list stack must be:
//
// [... parent]
//
// Upon exit from this function, it will be restored to that same state.
2021-06-20 06:16:42 +00:00
fn diff_keyed_middle(
&self,
2021-07-23 21:03:51 +00:00
old: &[VNode<'bump>],
new: &[VNode<'bump>],
shared_prefix_count: usize,
shared_suffix_count: usize,
old_shared_suffix_start: usize,
2021-03-03 07:27:26 +00:00
) {
// // Should have already diffed the shared-key prefixes and suffixes.
// debug_assert_ne!(new.first().map(|n| n.key()), old.first().map(|o| o.key()));
// debug_assert_ne!(new.last().map(|n| n.key()), old.last().map(|o| o.key()));
// // The algorithm below relies upon using `u32::MAX` as a sentinel
// // value, so if we have that many new nodes, it won't work. This
// // check is a bit academic (hence only enabled in debug), since
// // wasm32 doesn't have enough address space to hold that many nodes
// // in memory.
// debug_assert!(new.len() < u32::MAX as usize);
// // Map from each `old` node's key to its index within `old`.
2021-07-23 21:03:51 +00:00
// // IE if the keys were A B C, then we would have (A, 1) (B, 2) (C, 3).
// let mut old_key_to_old_index = old
// .iter()
// .enumerate()
// .map(|(i, o)| (o.key(), i))
// .collect::<FxHashMap<_, _>>();
// // The set of shared keys between `new` and `old`.
// let mut shared_keys = FxHashSet::default();
2021-07-23 21:03:51 +00:00
// // Map from each index in `new` to the index of the node in `old` that
// // has the same key.
2021-07-23 21:03:51 +00:00
// let mut new_index_to_old_index = new
// .iter()
// .map(|n| {
// let key = n.key();
// if let Some(&i) = old_key_to_old_index.get(&key) {
// shared_keys.insert(key);
// i
// } else {
// u32::MAX as usize
// }
// })
// .collect::<Vec<_>>();
// // If none of the old keys are reused by the new children, then we
// // remove all the remaining old children and create the new children
// // afresh.
// if shared_suffix_count == 0 && shared_keys.is_empty() {
// if shared_prefix_count == 0 {
// // self.edits.commit_traversal();
// self.remove_all_children(old);
// } else {
2021-07-23 21:03:51 +00:00
// // self.edits.go_down_to_child(shared_prefix_count);
// // self.edits.commit_traversal();
// self.remove_self_and_next_siblings(&old[shared_prefix_count..]);
// }
// self.create_and_append_children(new);
// return;
// }
2021-03-03 07:27:26 +00:00
// // Save each of the old children whose keys are reused in the new
// // children.
// let mut old_index_to_temp = vec![u32::MAX; old.len()];
// let mut start = 0;
// loop {
// let end = (start..old.len())
// .find(|&i| {
// let key = old[i].key();
// !shared_keys.contains(&key)
// })
// .unwrap_or(old.len());
// if end - start > 0 {
// // self.edits.commit_traversal();
// let mut t = self.edits.save_children_to_temporaries(
// shared_prefix_count + start,
// shared_prefix_count + end,
// );
// for i in start..end {
// old_index_to_temp[i] = t;
// t += 1;
// }
// }
// debug_assert!(end <= old.len());
// if end == old.len() {
// break;
// } else {
// start = end + 1;
// }
// }
2021-03-03 07:27:26 +00:00
// // Remove any old children whose keys were not reused in the new
// // children. Remove from the end first so that we don't mess up indices.
// let mut removed_count = 0;
// for (i, old_child) in old.iter().enumerate().rev() {
// if !shared_keys.contains(&old_child.key()) {
// // registry.remove_subtree(old_child);
// // todo
// // self.edits.commit_traversal();
2021-07-23 21:03:51 +00:00
// self.edits.remove(old_child.dom_id.get());
// self.edits.remove_child(i + shared_prefix_count);
// removed_count += 1;
// }
// }
2021-03-03 07:27:26 +00:00
// // If there aren't any more new children, then we are done!
// if new.is_empty() {
// return;
// }
2021-03-03 07:27:26 +00:00
// // The longest increasing subsequence within `new_index_to_old_index`. This
// // is the longest sequence on DOM nodes in `old` that are relatively ordered
// // correctly within `new`. We will leave these nodes in place in the DOM,
// // and only move nodes that are not part of the LIS. This results in the
// // maximum number of DOM nodes left in place, AKA the minimum number of DOM
// // nodes moved.
// let mut new_index_is_in_lis = FxHashSet::default();
// new_index_is_in_lis.reserve(new_index_to_old_index.len());
// let mut predecessors = vec![0; new_index_to_old_index.len()];
// let mut starts = vec![0; new_index_to_old_index.len()];
// longest_increasing_subsequence::lis_with(
// &new_index_to_old_index,
// &mut new_index_is_in_lis,
// |a, b| a < b,
// &mut predecessors,
// &mut starts,
// );
// // Now we will iterate from the end of the new children back to the
// // beginning, diffing old children we are reusing and if they aren't in the
// // LIS moving them to their new destination, or creating new children. Note
// // that iterating in reverse order lets us use `Node.prototype.insertBefore`
// // to move/insert children.
// //
// // But first, we ensure that we have a child on the change list stack that
// // we can `insertBefore`. We handle this once before looping over `new`
// // children, so that we don't have to keep checking on every loop iteration.
// if shared_suffix_count > 0 {
// // There is a shared suffix after these middle children. We will be
// // inserting before that shared suffix, so add the first child of that
// // shared suffix to the change list stack.
// //
// // [... parent]
// self.edits
// .go_down_to_child(old_shared_suffix_start - removed_count);
// // [... parent first_child_of_shared_suffix]
// } else {
// // There is no shared suffix coming after these middle children.
// // Therefore we have to process the last child in `new` and move it to
// // the end of the parent's children if it isn't already there.
// let last_index = new.len() - 1;
// // uhhhh why an unwrap?
// let last = new.last().unwrap();
// // let last = new.last().unwrap_throw();
// new = &new[..new.len() - 1];
// if shared_keys.contains(&last.key()) {
// let old_index = new_index_to_old_index[last_index];
// let temp = old_index_to_temp[old_index];
// // [... parent]
// self.edits.go_down_to_temp_child(temp);
// // [... parent last]
// self.diff_node(&old[old_index], last);
// if new_index_is_in_lis.contains(&last_index) {
// // Don't move it, since it is already where it needs to be.
// } else {
// // self.edits.commit_traversal();
// // [... parent last]
// self.edits.append_child();
// // [... parent]
// self.edits.go_down_to_temp_child(temp);
// // [... parent last]
// }
// } else {
// // self.edits.commit_traversal();
// // [... parent]
// self.create(last);
// // [... parent last]
// self.edits.append_child();
// // [... parent]
// self.edits.go_down_to_reverse_child(0);
// // [... parent last]
// }
// }
2021-03-03 07:27:26 +00:00
// for (new_index, new_child) in new.iter().enumerate().rev() {
// let old_index = new_index_to_old_index[new_index];
// if old_index == u32::MAX as usize {
// debug_assert!(!shared_keys.contains(&new_child.key()));
// // self.edits.commit_traversal();
// // [... parent successor]
// self.create(new_child);
// // [... parent successor new_child]
// self.edits.insert_before();
// // [... parent new_child]
// } else {
// debug_assert!(shared_keys.contains(&new_child.key()));
// let temp = old_index_to_temp[old_index];
// debug_assert_ne!(temp, u32::MAX);
// if new_index_is_in_lis.contains(&new_index) {
// // [... parent successor]
// self.edits.go_to_temp_sibling(temp);
// // [... parent new_child]
// } else {
// // self.edits.commit_traversal();
// // [... parent successor]
// self.edits.push_temporary(temp);
// // [... parent successor new_child]
// self.edits.insert_before();
// // [... parent new_child]
// }
2021-03-03 07:27:26 +00:00
// self.diff_node(&old[old_index], new_child);
// }
// }
}
2021-03-03 07:27:26 +00:00
// Diff the suffix of keyed children that share the same keys in the same order.
//
// The parent must be on the change list stack when we enter this function:
//
// [... parent]
//
// When this function exits, the change list stack remains the same.
2021-06-20 06:16:42 +00:00
fn diff_keyed_suffix(
2021-07-23 21:03:51 +00:00
&mut self,
old: &'bump [VNode<'bump>],
new: &'bump [VNode<'bump>],
new_shared_suffix_start: usize,
) {
2021-07-23 21:03:51 +00:00
debug_assert_eq!(old.len(), new.len());
debug_assert!(!old.is_empty());
2021-03-03 07:27:26 +00:00
2021-07-23 21:03:51 +00:00
for (i, (old_child, new_child)) in old.iter().zip(new.iter()).enumerate() {
self.diff_node(old_child, new_child);
}
2021-03-03 07:27:26 +00:00
}
2021-03-03 07:27:26 +00:00
// Diff children that are not keyed.
//
// The parent must be on the top of the change list stack when entering this
// function:
//
// [... parent]
//
// the change list stack is in the same state when this function returns.
fn diff_non_keyed_children(&mut self, old: &'bump [VNode<'bump>], new: &'bump [VNode<'bump>]) {
2021-03-03 07:27:26 +00:00
// Handled these cases in `diff_children` before calling this function.
debug_assert!(!new.is_empty());
debug_assert!(!old.is_empty());
2021-03-03 07:27:26 +00:00
// [... parent]
// self.edits.go_down();
// self.edits.push_root()
2021-03-03 07:27:26 +00:00
// [... parent child]
2021-06-23 05:44:48 +00:00
// todo!()
2021-07-13 20:48:47 +00:00
for (_i, (new_child, old_child)) in new.iter().zip(old.iter()).enumerate() {
2021-06-23 05:44:48 +00:00
// [... parent prev_child]
// self.edits.go_to_sibling(i);
2021-06-23 05:44:48 +00:00
// [... parent this_child]
2021-06-27 02:13:57 +00:00
2021-07-05 05:11:49 +00:00
// let did = old_child.get_mounted_id(self.components).unwrap();
// if did.0 == 0 {
// log::debug!("Root is bad: {:#?}", old_child);
// }
// self.edits.push_root(did);
2021-06-23 05:44:48 +00:00
self.diff_node(old_child, new_child);
2021-07-05 05:11:49 +00:00
// let old_id = old_child.get_mounted_id(self.components).unwrap();
// let new_id = new_child.get_mounted_id(self.components).unwrap();
// log::debug!(
// "pushed root. {:?}, {:?}",
// old_child.get_mounted_id(self.components).unwrap(),
// new_child.get_mounted_id(self.components).unwrap()
// );
// if old_id != new_id {
// log::debug!("Mismatch: {:?}", new_child);
// }
2021-06-23 05:44:48 +00:00
}
2021-03-03 07:27:26 +00:00
// match old.len().cmp(&new.len()) {
// // old.len > new.len -> removing some nodes
// Ordering::Greater => {
// // [... parent prev_child]
// self.edits.go_to_sibling(new.len());
// // [... parent first_child_to_remove]
// // self.edits.commit_traversal();
// // support::remove_self_and_next_siblings(state, &old[new.len()..]);
// self.remove_self_and_next_siblings(&old[new.len()..]);
// // [... parent]
// }
// // old.len < new.len -> adding some nodes
// Ordering::Less => {
// // [... parent last_child]
// self.edits.go_up();
// // [... parent]
// // self.edits.commit_traversal();
// self.create_and_append_children(&new[old.len()..]);
// }
// // old.len == new.len -> no nodes added/removed, but πerhaps changed
// Ordering::Equal => {
// // [... parent child]
// self.edits.go_up();
// // [... parent]
// }
// }
2021-03-03 07:27:26 +00:00
}
// ======================
// Support methods
// ======================
// Remove the current child and all of its following siblings.
//
// The change list stack must have this shape upon entry to this function:
//
// [... parent child]
//
// After the function returns, the child is no longer on the change list stack:
//
// [... parent]
pub fn remove_self_and_next_siblings(&self, old: &[VNode<'bump>]) {
// debug_assert!(self.edits.traversal_is_committed());
2021-05-19 14:14:02 +00:00
for child in old {
2021-07-13 20:48:47 +00:00
if let VNodeKind::Component(_vcomp) = child.kind {
2021-06-20 06:16:42 +00:00
// dom
2021-05-19 14:14:02 +00:00
// .create_text_node("placeholder for vcomponent");
todo!()
// let root_id = vcomp.stable_addr.as_ref().borrow().unwrap();
// self.lifecycle_events.push_back(LifeCycleEvent::Remove {
// root_id,
// stable_scope_addr: Rc::downgrade(&vcomp.ass_scope),
// })
2021-05-19 14:14:02 +00:00
// let id = get_id();
// *component.stable_addr.as_ref().borrow_mut() = Some(id);
// self.edits.save_known_root(id);
2021-05-19 14:14:02 +00:00
// let scope = Rc::downgrade(&component.ass_scope);
// self.lifecycle_events.push_back(LifeCycleEvent::Mount {
// caller: Rc::downgrade(&component.caller),
// root_id: id,
// stable_scope_addr: scope,
// });
}
2021-03-03 07:27:26 +00:00
// registry.remove_subtree(child);
}
todo!()
// self.edits.remove_self_and_next_siblings();
}
}
2021-03-03 07:27:26 +00:00
enum KeyedPrefixResult {
// Fast path: we finished diffing all the children just by looking at the
// prefix of shared keys!
Finished,
// There is more diffing work to do. Here is a count of how many children at
// the beginning of `new` and `old` we already processed.
MoreWorkToDo(usize),
}
2021-07-12 06:23:46 +00:00
/// This iterator iterates through a list of virtual children and only returns real children (Elements or Text).
///
/// This iterator is useful when it's important to load the next real root onto the top of the stack for operations like
/// "InsertBefore".
struct RealChildIterator<'a> {
scopes: &'a SharedResources,
2021-07-12 06:23:46 +00:00
// Heuristcally we should never bleed into 4 completely nested fragments/components
2021-07-12 06:23:46 +00:00
// Smallvec lets us stack allocate our little stack machine so the vast majority of cases are sane
// TODO: use const generics instead of the 4 estimation
stack: smallvec::SmallVec<[(u16, &'a VNode<'a>); 4]>,
2021-07-12 06:23:46 +00:00
}
impl<'a> RealChildIterator<'a> {
fn new(starter: &'a VNode<'a>, scopes: &'a SharedResources) -> Self {
2021-07-12 06:23:46 +00:00
Self {
scopes,
stack: smallvec::smallvec![(0, starter)],
}
}
}
impl<'a> Iterator for RealChildIterator<'a> {
2021-07-23 21:03:51 +00:00
type Item = &'a VNode<'a>;
2021-07-12 06:23:46 +00:00
2021-07-23 21:03:51 +00:00
fn next(&mut self) -> Option<&'a VNode<'a>> {
2021-07-12 06:23:46 +00:00
let mut should_pop = false;
2021-07-23 21:03:51 +00:00
let mut returned_node: Option<&'a VNode<'a>> = None;
2021-07-12 06:23:46 +00:00
let mut should_push = None;
while returned_node.is_none() {
if let Some((count, node)) = self.stack.last_mut() {
2021-07-12 22:19:27 +00:00
match &node.kind {
2021-07-12 06:23:46 +00:00
// We can only exit our looping when we get "real" nodes
// This includes fragments and components when they're empty (have a single root)
2021-07-12 22:19:27 +00:00
VNodeKind::Element(_) | VNodeKind::Text(_) => {
2021-07-12 06:23:46 +00:00
// We've recursed INTO an element/text
// We need to recurse *out* of it and move forward to the next
should_pop = true;
2021-07-23 21:03:51 +00:00
returned_node = Some(&*node);
2021-07-12 06:23:46 +00:00
}
// If we get a fragment we push the next child
2021-07-12 22:19:27 +00:00
VNodeKind::Fragment(frag) => {
2021-07-12 06:23:46 +00:00
let subcount = *count as usize;
if frag.children.len() == 0 {
should_pop = true;
2021-07-23 21:03:51 +00:00
returned_node = Some(&*node);
2021-07-12 06:23:46 +00:00
}
if subcount >= frag.children.len() {
should_pop = true;
} else {
should_push = Some(&frag.children[subcount]);
}
}
// Immediately abort suspended nodes - can't do anything with them yet
2021-07-12 22:19:27 +00:00
// VNodeKind::Suspended => should_pop = true,
VNodeKind::Suspended { node, .. } => {
todo!()
// *node = node.as_ref().borrow().get().expect("msg");
}
2021-07-12 06:23:46 +00:00
// For components, we load their root and push them onto the stack
2021-07-12 22:19:27 +00:00
VNodeKind::Component(sc) => {
let scope =
unsafe { self.scopes.get_scope(sc.ass_scope.get().unwrap()) }.unwrap();
// let scope = self.scopes.get(sc.ass_scope.get().unwrap()).unwrap();
2021-07-12 06:23:46 +00:00
// Simply swap the current node on the stack with the root of the component
*node = scope.root();
}
}
} else {
// If there's no more items on the stack, we're done!
return None;
}
if should_pop {
self.stack.pop();
if let Some((id, _)) = self.stack.last_mut() {
*id += 1;
}
should_pop = false;
}
if let Some(push) = should_push {
self.stack.push((0, push));
should_push = None;
}
}
returned_node
}
}
2021-07-13 19:34:12 +00:00
fn compare_strs(a: &str, b: &str) -> bool {
// Check by pointer, optimizing for static strs
if !std::ptr::eq(a, b) {
// If the pointers are different then check by value
a == b
} else {
true
}
}