coreutils/src/factor/gen_table.rs
kwantam e1dac4695e improved Sieve implementation ; add cargo update
This commit adds `cargo update` to the distclean target in the
makefile. This updates the Cargo.lock file when clearing the
deps directory.

In addition, it adds a faster implementation of the Sieve of
Eratosthenes for use by `src/factor/gen_table.rs` and `test/factor.rs`.
2015-05-15 19:39:43 -04:00

134 lines
3.6 KiB
Rust

/*
* This file is part of the uutils coreutils package.
*
* (c) kwantam <kwantam@gmail.com>
*
* For the full copyright and license information, please view the LICENSE file
* that was distributed with this source code.
*/
//! Generate a table of the multiplicative inverses of p_i mod 2^64
//! for the first 1027 odd primes (all 13 bit and smaller primes).
//! You can supply a commandline argument to override the default
//! value of 1027 for the number of entries in the table.
//!
//! 2 has no multiplicative inverse mode 2^64 because 2 | 2^64,
//! and in any case divisibility by two is trivial by checking the LSB.
#![cfg_attr(test, allow(dead_code))]
use sieve::Sieve;
use std::env::args;
use std::num::Wrapping;
use std::u64::MAX as MAX_U64;
#[cfg(test)]
use numeric::is_prime;
#[cfg(test)]
mod numeric;
mod sieve;
// extended Euclid algorithm
// precondition: a does not divide 2^64
fn inv_mod_u64(a: u64) -> Option<u64> {
let mut t = 0u64;
let mut newt = 1u64;
let mut r = 0u64;
let mut newr = a;
while newr != 0 {
let quot = if r == 0 {
// special case when we're just starting out
// This works because we know that
// a does not divide 2^64, so floor(2^64 / a) == floor((2^64-1) / a);
MAX_U64
} else {
r
} / newr;
let (tp, Wrapping(newtp)) =
(newt, Wrapping(t) - (Wrapping(quot) * Wrapping(newt)));
t = tp;
newt = newtp;
let (rp, Wrapping(newrp)) =
(newr, Wrapping(r) - (Wrapping(quot) * Wrapping(newr)));
r = rp;
newr = newrp;
}
if r > 1 { // not invertible
return None;
}
Some(t)
}
#[cfg_attr(test, allow(dead_code))]
fn main() {
// By default, we print the multiplicative inverses mod 2^64 of the first 1k primes
let n = args().skip(1).next().unwrap_or("1027".to_string()).parse::<usize>().ok().unwrap_or(1027);
print!("{}", PREAMBLE);
let mut cols = 3;
// we want a total of n + 1 values
let mut primes = Sieve::odd_primes().take(n + 1);
// in each iteration of the for loop, we use the value yielded
// by the previous iteration. This leaves one value left at the
// end, which we call NEXT_PRIME.
let mut x = primes.next().unwrap();
for next in primes {
// format the table
let outstr = format!("({}, {}, {}),", x, inv_mod_u64(x).unwrap(), MAX_U64 / x);
if cols + outstr.len() > MAX_WIDTH {
print!("\n {}", outstr);
cols = 4 + outstr.len();
} else {
print!(" {}", outstr);
cols += 1 + outstr.len();
}
x = next;
}
print!("\n];\n\n#[allow(dead_code)]\npub const NEXT_PRIME: u64 = {};\n", x);
}
#[test]
fn test_inverter() {
let num = 10000;
let invs = Sieve::odd_primes().map(|x| inv_mod_u64(x).unwrap());
assert!(Sieve::odd_primes().zip(invs).take(num).all(|(x, y)| {
let Wrapping(z) = Wrapping(x) * Wrapping(y);
is_prime(x) && z == 1
}));
}
#[test]
fn test_generator() {
let prime_10001 = Sieve::primes().skip(10000).next();
assert_eq!(prime_10001, Some(104743));
}
const MAX_WIDTH: usize = 102;
const PREAMBLE: &'static str =
r##"/*
* This file is part of the uutils coreutils package.
*
* (c) kwantam <kwantam@gmail.com>
*
* For the full copyright and license information, please view the LICENSE file
* that was distributed with this source code.
*/
// *** NOTE: this file was automatically generated.
// Please do not edit by hand. Instead, modify and
// re-run src/factor/gen_tables.rs.
pub const P_INVS_U64: &'static [(u64, u64, u64)] = &[
"##;