/* * This file is part of the uutils coreutils package. * * (c) kwantam * * For the full copyright and license information, please view the LICENSE file * that was distributed with this source code. */ //! Generate a table of the multiplicative inverses of p_i mod 2^64 //! for the first 1027 odd primes (all 13 bit and smaller primes). //! You can supply a commandline argument to override the default //! value of 1027 for the number of entries in the table. //! //! 2 has no multiplicative inverse mode 2^64 because 2 | 2^64, //! and in any case divisibility by two is trivial by checking the LSB. #![cfg_attr(test, allow(dead_code))] use sieve::Sieve; use std::env::args; use std::num::Wrapping; use std::u64::MAX as MAX_U64; #[cfg(test)] use numeric::is_prime; #[cfg(test)] mod numeric; mod sieve; // extended Euclid algorithm // precondition: a does not divide 2^64 fn inv_mod_u64(a: u64) -> Option { let mut t = 0u64; let mut newt = 1u64; let mut r = 0u64; let mut newr = a; while newr != 0 { let quot = if r == 0 { // special case when we're just starting out // This works because we know that // a does not divide 2^64, so floor(2^64 / a) == floor((2^64-1) / a); MAX_U64 } else { r } / newr; let (tp, Wrapping(newtp)) = (newt, Wrapping(t) - (Wrapping(quot) * Wrapping(newt))); t = tp; newt = newtp; let (rp, Wrapping(newrp)) = (newr, Wrapping(r) - (Wrapping(quot) * Wrapping(newr))); r = rp; newr = newrp; } if r > 1 { // not invertible return None; } Some(t) } #[cfg_attr(test, allow(dead_code))] fn main() { // By default, we print the multiplicative inverses mod 2^64 of the first 1k primes let n = args().skip(1).next().unwrap_or("1027".to_string()).parse::().ok().unwrap_or(1027); print!("{}", PREAMBLE); let mut cols = 3; // we want a total of n + 1 values let mut primes = Sieve::odd_primes().take(n + 1); // in each iteration of the for loop, we use the value yielded // by the previous iteration. This leaves one value left at the // end, which we call NEXT_PRIME. let mut x = primes.next().unwrap(); for next in primes { // format the table let outstr = format!("({}, {}, {}),", x, inv_mod_u64(x).unwrap(), MAX_U64 / x); if cols + outstr.len() > MAX_WIDTH { print!("\n {}", outstr); cols = 4 + outstr.len(); } else { print!(" {}", outstr); cols += 1 + outstr.len(); } x = next; } print!("\n];\n\n#[allow(dead_code)]\npub const NEXT_PRIME: u64 = {};\n", x); } #[test] fn test_inverter() { let num = 10000; let invs = Sieve::odd_primes().map(|x| inv_mod_u64(x).unwrap()); assert!(Sieve::odd_primes().zip(invs).take(num).all(|(x, y)| { let Wrapping(z) = Wrapping(x) * Wrapping(y); is_prime(x) && z == 1 })); } #[test] fn test_generator() { let prime_10001 = Sieve::primes().skip(10000).next(); assert_eq!(prime_10001, Some(104743)); } const MAX_WIDTH: usize = 102; const PREAMBLE: &'static str = r##"/* * This file is part of the uutils coreutils package. * * (c) kwantam * * For the full copyright and license information, please view the LICENSE file * that was distributed with this source code. */ // *** NOTE: this file was automatically generated. // Please do not edit by hand. Instead, modify and // re-run src/factor/gen_tables.rs. pub const P_INVS_U64: &'static [(u64, u64, u64)] = &[ "##;