20 KiB
Derive Reference
Overview
To derive clap
types, you need to enable the derive
feature flag.
See demo.rs and demo.md for a brief example.
Let's start by breaking down the anatomy of the derive attributes:
use clap::{Parser, Args, Subcommand, ArgEnum};
/// Doc comment
#[derive(Parser)]
#[clap(APP ATTRIBUTE)]
struct Cli {
/// Doc comment
#[clap(ARG ATTRIBUTE)]
field: UserType,
#[clap(arg_enum, ARG ATTRIBUTE...)]
field: EnumValues,
#[clap(flatten)]
delegate: Struct,
#[clap(subcommand)]
command: Command,
}
/// Doc comment
#[derive(Args)]
#[clap(PARENT APP ATTRIBUTE)]
struct Struct {
/// Doc comment
#[clap(ARG ATTRIBUTE)]
field: UserType,
}
/// Doc comment
#[derive(Subcommand)]
#[clap(PARENT APP ATTRIBUTE)]
enum Command {
/// Doc comment
#[clap(APP ATTRIBUTE)]
Variant1(Struct),
/// Doc comment
#[clap(APP ATTRIBUTE)]
Variant2 {
/// Doc comment
#[clap(ARG ATTRIBUTE)]
field: UserType,
}
}
/// Doc comment
#[derive(ArgEnum)]
#[clap(ARG ENUM ATTRIBUTE)]
enum EnumValues {
/// Doc comment
#[clap(POSSIBLE VALUE ATTRIBUTE)]
Variant1,
}
fn main() {
let cli = Cli::parse();
}
Parser
parses arguments into astruct
(arguments) orenum
(subcommands).Args
allows defining a set of re-usable arguments that get merged into their parent container.Subcommand
defines available subcommands.- Subcommand arguments can be defined in a struct-variant or automatically flattened with a tuple-variant.
ArgEnum
allows parsing a value directly into anenum
, erroring on unsupported values.- The derive doesn't work on enums that contain non-unit variants, unless they are skipped
See also the tutorial and examples.
Attributes
Terminology
Raw attributes are forwarded directly to the underlying clap
builder. Any
Command
, Arg
, or PossibleValue
method can be used as an attribute.
Raw attributes come in two different syntaxes:
#[clap(
global = true, // name = arg form, neat for one-arg methods
required_if_eq("out", "file") // name(arg1, arg2, ...) form.
)]
method = arg
can only be used for methods which take only one argument.method(arg1, arg2)
can be used with any method.
As long as method_name
is not one of the magical methods - it will be
translated into a mere method call.
Magic attributes have post-processing done to them, whether that is
- Providing of defaults
- Special behavior is triggered off of it
Magic attributes are more constrained in the syntax they support, usually just
<attr> = <value>
though some use <attr>(<value>)
instead. See the specific
magic attributes documentation for details. This allows users to access the
raw behavior of an attribute via <attr>(<value>)
syntax.
NOTE: Some attributes are inferred from Arg Types and Doc Comments. Explicit attributes take precedence over inferred attributes.
Command Attributes
These correspond to a clap::Command
which is used for both top-level parsers and
when defining subcommands.
Magic attributes:
name = <expr>
:clap::Command::name
- When not present: crate
name
(Parser
container), variant name (Subcommand
variant)
- When not present: crate
version [= <expr>]
:clap::Command::version
- When not present: no version set
- Without
<expr>
: defaults to crateversion
author [= <expr>]
:clap::Command::author
- When not present: no author set
- Without
<expr>
: defaults to crateauthors
about [= <expr>]
:clap::Command::about
- When not present: Doc comment summary
- Without
<expr>
: cratedescription
(Parser
container)- TIP: When a doc comment is also present, you most likely want to add
#[clap(long_about = None)]
to clear the doc comment so onlyabout
gets shown with both-h
and--help
.
- TIP: When a doc comment is also present, you most likely want to add
long_about = <expr>
:clap::Command::long_about
- When not present: Doc comment if there is a blank line, else nothing
verbatim_doc_comment
: Minimizes pre-processing when converting doc comments toabout
/long_about
next_display_order
:clap::Command::next_display_order
next_help_heading
:clap::Command::next_help_heading
- When
flatten
ingArgs
, this is scoped to just the args in this struct and any structflatten
ed into it
- When
rename_all = <expr>
: Override default field / variant name case conversion forCommand::name
/Arg::name
- When not present:
kebab-case
- Available values:
camelCase
,kebab-case
,PascalCase
,SCREAMING_SNAKE_CASE
,snake_case
,lower
,UPPER
,verbatim
- When not present:
rename_all_env = <expr>
: Override default field name case conversion for env variables forclap::Arg::env
- When not present:
SCREAMING_SNAKE_CASE
- Available values:
camelCase
,kebab-case
,PascalCase
,SCREAMING_SNAKE_CASE
,snake_case
,lower
,UPPER
,verbatim
- When not present:
And for Subcommand
variants:
skip
: Ignore this variantflatten
: Delegates to the variant for more subcommands (must implementSubcommand
)subcommand
: Nest subcommands under the current set of subcommands (must implementSubcommand
)external_subcommand
:clap::Command::allow_external_subcommand(true)
- Variant must be either
Variant(Vec<String>)
orVariant(Vec<OsString>)
- Variant must be either
Raw attributes: Any Command
method can also be used as an attribute, see Terminology for syntax.
- e.g.
#[clap(arg_required_else_help(true))]
would translate tocmd.arg_required_else_help(true)
Arg Attributes
These correspond to a clap::Arg
.
Magic attributes:
name = <expr>
:clap::Arg::new
- When not present: case-converted field name is used
value_parser [= <expr>]
:clap::Arg::value_parser
- When not present: will auto-select an implementation based on the field type
help = <expr>
:clap::Arg::help
- When not present: Doc comment summary
long_help = <expr>
:clap::Arg::long_help
- When not present: Doc comment if there is a blank line, else nothing
verbatim_doc_comment
: Minimizes pre-processing when converting doc comments tohelp
/long_help
short [= <char>]
:clap::Arg::short
- When not present: no short set
- Without
<char>
: defaults to first character in the case-converted field name
long [= <str>]
:clap::Arg::long
- When not present: no long set
- Without
<str>
: defaults to the case-converted field name
env [= <str>]
:clap::Arg::env
(needsenv
feature enabled)- When not present: no env set
- Without
<str>
: defaults to the case-converted field name
flatten
: Delegates to the field for more arguments (must implementArgs
)- Only
help_heading
can be used withflatten
. See clap-rs/clap#3269 for why arg attributes are not generally supported. - Tip: Though we do apply a flattened
Args
's Parent Command Attributes, this makes reuse harder. Generally prefer putting the cmd attributes on theParser
or on the flattened field.
- Only
subcommand
: Delegates definition of subcommands to the field (must implementSubcommand
)- When
Option<T>
, the subcommand becomes optional
- When
from_global
: Read aclap::Arg::global
argument (raw attribute), regardless of what subcommand you are inparse(<kind> [= <function>])
:clap::Arg::validator
andclap::ArgMatches::values_of_t
- Deprecated: except for
from_flag
orfrom_occurrences
, instead usevalue_parser
- Default:
try_from_str
- Warning: for
Path
/OsString
, be sure to usetry_from_os_str
- See Arg Types for more details
- Deprecated: except for
arg_enum
: Parse the value using theArgEnum
traitskip [= <expr>]
: Ignore this field, filling in with<expr>
- Without
<expr>
: fills the field withDefault::default()
- Without
default_value = <str>
:clap::Arg::default_value
andclap::Arg::required(false)
default_value_t [= <expr>]
:clap::Arg::default_value
andclap::Arg::required(false)
- Requires
std::fmt::Display
or#[clap(arg_enum)]
- Without
<expr>
, relies onDefault::default()
- Requires
default_value_os_t [= <expr>]
:clap::Arg::default_value_os
andclap::Arg::required(false)
- Requires
std::convert::Into<OsString>
or#[clap(arg_enum)]
- Without
<expr>
, relies onDefault::default()
- Requires
Raw attributes: Any Arg
method can also be used as an attribute, see Terminology for syntax.
- e.g.
#[clap(max_values(3))]
would translate toarg.max_values(3)
Arg Enum Attributes
rename_all = <expr>
: Override default field / variant name case conversion forPossibleValue::new
- When not present:
kebab-case
- Available values:
camelCase
,kebab-case
,PascalCase
,SCREAMING_SNAKE_CASE
,snake_case
,lower
,UPPER
,verbatim
- When not present:
Possible Value Attributes
These correspond to a clap::PossibleValue
.
Magic attributes:
name = <expr>
:clap::PossibleValue::new
- When not present: case-converted field name is used
help = <expr>
:clap::PossibleValue::help
- When not present: Doc comment summary
Raw attributes: Any PossibleValue
method can also be used as an attribute, see Terminology for syntax.
- e.g.
#[clap(alias("foo"))]
would translate topv.alias("foo")
Arg Types
clap
assumes some intent based on the type used:
Type | Effect | Implies |
---|---|---|
bool |
flag | #[clap(parse(from_flag))] |
Option<T> |
optional argument | .takes_value(true).required(false) |
Option<Option<T>> |
optional value for optional argument | .takes_value(true).required(false).min_values(0).max_values(1) |
T |
required argument | .takes_value(true).required(!has_default) |
Vec<T> |
0.. occurrences of argument |
.takes_value(true).required(false).multiple_occurrences(true) |
Option<Vec<T>> |
0.. occurrences of argument |
.takes_value(true).required(false).multiple_occurrences(true) |
Notes:
- For custom type behavior, you can override the implied attributes/settings and/or set additional ones
- For example, see custom-bool
Option<Vec<T>>
will beNone
instead ofvec![]
if no arguments are provided.- This gives the user some flexibility in designing their argument, like with
min_values(0)
- This gives the user some flexibility in designing their argument, like with
You can then support your custom type with #[clap(parse(<kind> [= <function>]))]
:
<kind> |
Signature | Default <function> |
---|---|---|
from_str |
fn(&str) -> T |
::std::convert::From::from |
try_from_str (default) |
fn(&str) -> Result<T, E> |
::std::str::FromStr::from_str |
from_os_str |
fn(&OsStr) -> T |
::std::convert::From::from |
try_from_os_str |
fn(&OsStr) -> Result<T, OsString> |
(no default function) |
from_occurrences |
fn(u64) -> T |
value as T |
from_flag |
fn(bool) -> T |
::std::convert::From::from |
Notes:
from_os_str
:- Implies
arg.takes_value(true).allow_invalid_utf8(true)
- Implies
try_from_os_str
:- Implies
arg.takes_value(true).allow_invalid_utf8(true)
- Implies
from_occurrences
:- Implies
arg.takes_value(false).multiple_occurrences(true)
- Reads from
clap::ArgMatches::occurrences_of
rather than avalue_of
function- Note: operations on values, like
default_value
, are unlikely to do what you want
- Note: operations on values, like
- Implies
from_flag
- Implies
arg.takes_value(false)
- Reads from
clap::ArgMatches::is_present
rather than avalue_of
function- Note: operations on values, like
default_value
, are unlikely to do what you want
- Note: operations on values, like
- Implies
Warning:
- To support non-UTF8 paths, you must use
parse(from_os_str)
, otherwiseclap
will useclap::ArgMatches::value_of
withPathBuf::FromStr
.
Doc Comments
In clap, help messages for the whole binary can be specified
via [Command::about
] and [Command::long_about
] while help messages
for individual arguments can be specified via [Arg::help
] and [Arg::long_help
]".
long_*
variants are used when user calls the program with
--help
and "short" variants are used with -h
flag.
# use clap::Parser;
#[derive(Parser)]
#[clap(about = "I am a program and I work, just pass `-h`", long_about = None)]
struct Foo {
#[clap(short, help = "Pass `-h` and you'll see me!")]
bar: String,
}
For convenience, doc comments can be used instead of raw methods (this example works exactly like the one above):
# use clap::Parser;
#[derive(Parser)]
/// I am a program and I work, just pass `-h`
struct Foo {
/// Pass `-h` and you'll see me!
bar: String,
}
NOTE: Attributes have priority over doc comments!
Top level doc comments always generate Command::about/long_about
calls!
If you really want to use the Command::about/long_about
methods (you likely don't),
use the about
/ long_about
attributes to override the calls generated from
the doc comment. To clear long_about
, you can use
#[clap(long_about = None)]
.
TIP: Set #![deny(missing_docs)]
to catch missing --help
documentation at compile time.
Pre-processing
# use clap::Parser;
#[derive(Parser)]
/// Hi there, I'm Robo!
///
/// I like beeping, stumbling, eating your electricity,
/// and making records of you singing in a shower.
/// Pay up, or I'll upload it to youtube!
struct Robo {
/// Call my brother SkyNet.
///
/// I am artificial superintelligence. I won't rest
/// until I'll have destroyed humanity. Enjoy your
/// pathetic existence, you mere mortals.
#[clap(long)]
kill_all_humans: bool,
}
A doc comment consists of three parts:
- Short summary
- A blank line (whitespace only)
- Detailed description, all the rest
The summary corresponds with Command::about
/ Arg::help
. When a blank line is
present, the whole doc comment will be passed to Command::long_about
/
Arg::long_help
. Or in other words, a doc may result in just a Command::about
/
Arg::help
or Command::about
/ Arg::help
and Command::long_about
/
Arg::long_help
In addition, when verbatim_doc_comment
is not present, clap
applies some preprocessing, including:
-
Strip leading and trailing whitespace from every line, if present.
-
Strip leading and trailing blank lines, if present.
-
Interpret each group of non-empty lines as a word-wrapped paragraph.
We replace newlines within paragraphs with spaces to allow the output to be re-wrapped to the terminal width.
-
Strip any excess blank lines so that there is exactly one per paragraph break.
-
If the first paragraph ends in exactly one period, remove the trailing period (i.e. strip trailing periods but not trailing ellipses).
Sometimes you don't want this preprocessing to apply, for example the comment contains
some ASCII art or markdown tables, you would need to preserve LFs along with
blank lines and the leading/trailing whitespace. When you pass use the
verbatim_doc_comment
magic attribute, you preserve
them.
Note: Keep in mind that verbatim_doc_comment
will still
- Remove one leading space from each line, even if this attribute is present,
to allow for a space between
///
and the content. - Remove leading and trailing blank lines
Tips
- To get access to a
Command
callCommandFactory::command
(implemented when derivingParser
) - Proactively check for bad
Command
configurations by callingCommand::debug_assert
in a test (example)
Mixing Builder and Derive APIs
The builder and derive APIs do not live in isolation. They can work together, which is especially helpful if some arguments can be specified at compile-time while others must be specified at runtime.
Using derived arguments in a builder application
When using the derive API, you can #[clap(flatten)]
a struct deriving Args
into a struct deriving Args
or Parser
. This example shows how you can augment a Command
instance created using the builder API with Args
created using the derive API.
It uses the Args::augment_args
method to add the arguments to the Command
instance.
Crates such as clap-verbosity-flag provide structs that implement Args
or Parser
. Without the technique shown in this example, it would not be possible to use such crates with the builder API. augment_args
to the rescue!
Using derived subcommands in a builder application
When using the derive API, you can use #[clap(subcommand)]
inside the struct to add subcommands. The type of the field is usually an enum that derived Parser
. However, you can also add the subcommands in that enum to a Command
instance created with the builder API.
It uses the Subcommand::augment_subcommands
method to add the subcommands to the Command
instance.
Adding hand-implemented subcommands to a derived application
When using the derive API, you can use #[clap(subcommand)]
inside the struct to add subcommands. The type of the field is usually an enum that derived Parser
. However, you can also implement the Subcommand
trait manually on this enum (or any other type) and it can still be used inside the struct created with the derive API. The implementation of the Subcommand
trait will use the builder API to add the subcommands to the Command
instance created behind the scenes for you by the derive API.
Notice how in the previous example we used augment_subcommands
on an enum that derived Parser
, whereas now we implement augment_subcommands
ourselves, but the derive API calls it automatically since we used the #[clap(subcommand)]
attribute.
Flattening hand-implemented args into a derived application
When using the derive API, you can use #[clap(flatten)]
inside the struct to add arguments as if they were added directly to the containing struct. The type of the field is usually an struct that derived Args
. However, you can also implement the Args
trait manually on this struct (or any other type) and it can still be used inside the struct created with the derive API. The implementation of the Args
trait will use the builder API to add the arguments to the Command
instance created behind the scenes for you by the derive API.
Notice how in the example 1 we used augment_args
on the struct that derived Parser
, whereas now we implement augment_args
ourselves, but the derive API calls it automatically since we used the #[clap(flatten)]
attribute.