mirror of
https://github.com/bevyengine/bevy
synced 2025-01-22 18:05:17 +00:00
ffecb05a0a
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release. The examples are all ported over and operational with a few exceptions: * I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure. * Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example. * Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
610 lines
26 KiB
WebGPU Shading Language
610 lines
26 KiB
WebGPU Shading Language
// From the Filament design doc
|
||
// https://google.github.io/filament/Filament.html#table_symbols
|
||
// Symbol Definition
|
||
// v View unit vector
|
||
// l Incident light unit vector
|
||
// n Surface normal unit vector
|
||
// h Half unit vector between l and v
|
||
// f BRDF
|
||
// f_d Diffuse component of a BRDF
|
||
// f_r Specular component of a BRDF
|
||
// α Roughness, remapped from using input perceptualRoughness
|
||
// σ Diffuse reflectance
|
||
// Ω Spherical domain
|
||
// f0 Reflectance at normal incidence
|
||
// f90 Reflectance at grazing angle
|
||
// χ+(a) Heaviside function (1 if a>0 and 0 otherwise)
|
||
// nior Index of refraction (IOR) of an interface
|
||
// ⟨n⋅l⟩ Dot product clamped to [0..1]
|
||
// ⟨a⟩ Saturated value (clamped to [0..1])
|
||
|
||
// The Bidirectional Reflectance Distribution Function (BRDF) describes the surface response of a standard material
|
||
// and consists of two components, the diffuse component (f_d) and the specular component (f_r):
|
||
// f(v,l) = f_d(v,l) + f_r(v,l)
|
||
//
|
||
// The form of the microfacet model is the same for diffuse and specular
|
||
// f_r(v,l) = f_d(v,l) = 1 / { |n⋅v||n⋅l| } ∫_Ω D(m,α) G(v,l,m) f_m(v,l,m) (v⋅m) (l⋅m) dm
|
||
//
|
||
// In which:
|
||
// D, also called the Normal Distribution Function (NDF) models the distribution of the microfacets
|
||
// G models the visibility (or occlusion or shadow-masking) of the microfacets
|
||
// f_m is the microfacet BRDF and differs between specular and diffuse components
|
||
//
|
||
// The above integration needs to be approximated.
|
||
|
||
#import bevy_pbr::mesh_view_bind_group
|
||
#import bevy_pbr::mesh_struct
|
||
|
||
[[group(2), binding(0)]]
|
||
var<uniform> mesh: Mesh;
|
||
|
||
[[block]]
|
||
struct StandardMaterial {
|
||
base_color: vec4<f32>;
|
||
emissive: vec4<f32>;
|
||
perceptual_roughness: f32;
|
||
metallic: f32;
|
||
reflectance: f32;
|
||
// 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
|
||
flags: u32;
|
||
alpha_cutoff: f32;
|
||
};
|
||
|
||
let STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT: u32 = 1u;
|
||
let STANDARD_MATERIAL_FLAGS_EMISSIVE_TEXTURE_BIT: u32 = 2u;
|
||
let STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT: u32 = 4u;
|
||
let STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT: u32 = 8u;
|
||
let STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT: u32 = 16u;
|
||
let STANDARD_MATERIAL_FLAGS_UNLIT_BIT: u32 = 32u;
|
||
let STANDARD_MATERIAL_FLAGS_ALPHA_MODE_OPAQUE: u32 = 64u;
|
||
let STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK: u32 = 128u;
|
||
let STANDARD_MATERIAL_FLAGS_ALPHA_MODE_BLEND: u32 = 256u;
|
||
|
||
[[group(1), binding(0)]]
|
||
var<uniform> material: StandardMaterial;
|
||
[[group(1), binding(1)]]
|
||
var base_color_texture: texture_2d<f32>;
|
||
[[group(1), binding(2)]]
|
||
var base_color_sampler: sampler;
|
||
[[group(1), binding(3)]]
|
||
var emissive_texture: texture_2d<f32>;
|
||
[[group(1), binding(4)]]
|
||
var emissive_sampler: sampler;
|
||
[[group(1), binding(5)]]
|
||
var metallic_roughness_texture: texture_2d<f32>;
|
||
[[group(1), binding(6)]]
|
||
var metallic_roughness_sampler: sampler;
|
||
[[group(1), binding(7)]]
|
||
var occlusion_texture: texture_2d<f32>;
|
||
[[group(1), binding(8)]]
|
||
var occlusion_sampler: sampler;
|
||
[[group(1), binding(9)]]
|
||
var normal_map_texture: texture_2d<f32>;
|
||
[[group(1), binding(10)]]
|
||
var normal_map_sampler: sampler;
|
||
|
||
let PI: f32 = 3.141592653589793;
|
||
|
||
fn saturate(value: f32) -> f32 {
|
||
return clamp(value, 0.0, 1.0);
|
||
}
|
||
|
||
// distanceAttenuation is simply the square falloff of light intensity
|
||
// combined with a smooth attenuation at the edge of the light radius
|
||
//
|
||
// light radius is a non-physical construct for efficiency purposes,
|
||
// because otherwise every light affects every fragment in the scene
|
||
fn getDistanceAttenuation(distanceSquare: f32, inverseRangeSquared: f32) -> f32 {
|
||
let factor = distanceSquare * inverseRangeSquared;
|
||
let smoothFactor = saturate(1.0 - factor * factor);
|
||
let attenuation = smoothFactor * smoothFactor;
|
||
return attenuation * 1.0 / max(distanceSquare, 0.0001);
|
||
}
|
||
|
||
// Normal distribution function (specular D)
|
||
// Based on https://google.github.io/filament/Filament.html#citation-walter07
|
||
|
||
// D_GGX(h,α) = α^2 / { π ((n⋅h)^2 (α2−1) + 1)^2 }
|
||
|
||
// Simple implementation, has precision problems when using fp16 instead of fp32
|
||
// see https://google.github.io/filament/Filament.html#listing_speculardfp16
|
||
fn D_GGX(roughness: f32, NoH: f32, h: vec3<f32>) -> f32 {
|
||
let oneMinusNoHSquared = 1.0 - NoH * NoH;
|
||
let a = NoH * roughness;
|
||
let k = roughness / (oneMinusNoHSquared + a * a);
|
||
let d = k * k * (1.0 / PI);
|
||
return d;
|
||
}
|
||
|
||
// Visibility function (Specular G)
|
||
// V(v,l,a) = G(v,l,α) / { 4 (n⋅v) (n⋅l) }
|
||
// such that f_r becomes
|
||
// f_r(v,l) = D(h,α) V(v,l,α) F(v,h,f0)
|
||
// where
|
||
// V(v,l,α) = 0.5 / { n⋅l sqrt((n⋅v)^2 (1−α2) + α2) + n⋅v sqrt((n⋅l)^2 (1−α2) + α2) }
|
||
// Note the two sqrt's, that may be slow on mobile, see https://google.github.io/filament/Filament.html#listing_approximatedspecularv
|
||
fn V_SmithGGXCorrelated(roughness: f32, NoV: f32, NoL: f32) -> f32 {
|
||
let a2 = roughness * roughness;
|
||
let lambdaV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
|
||
let lambdaL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
|
||
let v = 0.5 / (lambdaV + lambdaL);
|
||
return v;
|
||
}
|
||
|
||
// Fresnel function
|
||
// see https://google.github.io/filament/Filament.html#citation-schlick94
|
||
// F_Schlick(v,h,f_0,f_90) = f_0 + (f_90 − f_0) (1 − v⋅h)^5
|
||
fn F_Schlick_vec(f0: vec3<f32>, f90: f32, VoH: f32) -> vec3<f32> {
|
||
// not using mix to keep the vec3 and float versions identical
|
||
return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0);
|
||
}
|
||
|
||
fn F_Schlick(f0: f32, f90: f32, VoH: f32) -> f32 {
|
||
// not using mix to keep the vec3 and float versions identical
|
||
return f0 + (f90 - f0) * pow(1.0 - VoH, 5.0);
|
||
}
|
||
|
||
fn fresnel(f0: vec3<f32>, LoH: f32) -> vec3<f32> {
|
||
// f_90 suitable for ambient occlusion
|
||
// see https://google.github.io/filament/Filament.html#lighting/occlusion
|
||
let f90 = saturate(dot(f0, vec3<f32>(50.0 * 0.33)));
|
||
return F_Schlick_vec(f0, f90, LoH);
|
||
}
|
||
|
||
// Specular BRDF
|
||
// https://google.github.io/filament/Filament.html#materialsystem/specularbrdf
|
||
|
||
// Cook-Torrance approximation of the microfacet model integration using Fresnel law F to model f_m
|
||
// f_r(v,l) = { D(h,α) G(v,l,α) F(v,h,f0) } / { 4 (n⋅v) (n⋅l) }
|
||
fn specular(f0: vec3<f32>, roughness: f32, h: vec3<f32>, NoV: f32, NoL: f32,
|
||
NoH: f32, LoH: f32, specularIntensity: f32) -> vec3<f32> {
|
||
let D = D_GGX(roughness, NoH, h);
|
||
let V = V_SmithGGXCorrelated(roughness, NoV, NoL);
|
||
let F = fresnel(f0, LoH);
|
||
|
||
return (specularIntensity * D * V) * F;
|
||
}
|
||
|
||
// Diffuse BRDF
|
||
// https://google.github.io/filament/Filament.html#materialsystem/diffusebrdf
|
||
// fd(v,l) = σ/π * 1 / { |n⋅v||n⋅l| } ∫Ω D(m,α) G(v,l,m) (v⋅m) (l⋅m) dm
|
||
//
|
||
// simplest approximation
|
||
// float Fd_Lambert() {
|
||
// return 1.0 / PI;
|
||
// }
|
||
//
|
||
// vec3 Fd = diffuseColor * Fd_Lambert();
|
||
//
|
||
// Disney approximation
|
||
// See https://google.github.io/filament/Filament.html#citation-burley12
|
||
// minimal quality difference
|
||
fn Fd_Burley(roughness: f32, NoV: f32, NoL: f32, LoH: f32) -> f32 {
|
||
let f90 = 0.5 + 2.0 * roughness * LoH * LoH;
|
||
let lightScatter = F_Schlick(1.0, f90, NoL);
|
||
let viewScatter = F_Schlick(1.0, f90, NoV);
|
||
return lightScatter * viewScatter * (1.0 / PI);
|
||
}
|
||
|
||
// From https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
|
||
fn EnvBRDFApprox(f0: vec3<f32>, perceptual_roughness: f32, NoV: f32) -> vec3<f32> {
|
||
let c0 = vec4<f32>(-1.0, -0.0275, -0.572, 0.022);
|
||
let c1 = vec4<f32>(1.0, 0.0425, 1.04, -0.04);
|
||
let r = perceptual_roughness * c0 + c1;
|
||
let a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
|
||
let AB = vec2<f32>(-1.04, 1.04) * a004 + r.zw;
|
||
return f0 * AB.x + AB.y;
|
||
}
|
||
|
||
fn perceptualRoughnessToRoughness(perceptualRoughness: f32) -> f32 {
|
||
// clamp perceptual roughness to prevent precision problems
|
||
// According to Filament design 0.089 is recommended for mobile
|
||
// Filament uses 0.045 for non-mobile
|
||
let clampedPerceptualRoughness = clamp(perceptualRoughness, 0.089, 1.0);
|
||
return clampedPerceptualRoughness * clampedPerceptualRoughness;
|
||
}
|
||
|
||
// from https://64.github.io/tonemapping/
|
||
// reinhard on RGB oversaturates colors
|
||
fn reinhard(color: vec3<f32>) -> vec3<f32> {
|
||
return color / (1.0 + color);
|
||
}
|
||
|
||
fn reinhard_extended(color: vec3<f32>, max_white: f32) -> vec3<f32> {
|
||
let numerator = color * (1.0 + (color / vec3<f32>(max_white * max_white)));
|
||
return numerator / (1.0 + color);
|
||
}
|
||
|
||
// luminance coefficients from Rec. 709.
|
||
// https://en.wikipedia.org/wiki/Rec._709
|
||
fn luminance(v: vec3<f32>) -> f32 {
|
||
return dot(v, vec3<f32>(0.2126, 0.7152, 0.0722));
|
||
}
|
||
|
||
fn change_luminance(c_in: vec3<f32>, l_out: f32) -> vec3<f32> {
|
||
let l_in = luminance(c_in);
|
||
return c_in * (l_out / l_in);
|
||
}
|
||
|
||
fn reinhard_luminance(color: vec3<f32>) -> vec3<f32> {
|
||
let l_old = luminance(color);
|
||
let l_new = l_old / (1.0 + l_old);
|
||
return change_luminance(color, l_new);
|
||
}
|
||
|
||
fn reinhard_extended_luminance(color: vec3<f32>, max_white_l: f32) -> vec3<f32> {
|
||
let l_old = luminance(color);
|
||
let numerator = l_old * (1.0 + (l_old / (max_white_l * max_white_l)));
|
||
let l_new = numerator / (1.0 + l_old);
|
||
return change_luminance(color, l_new);
|
||
}
|
||
|
||
fn view_z_to_z_slice(view_z: f32) -> u32 {
|
||
// NOTE: had to use -view_z to make it positive else log(negative) is nan
|
||
return u32(floor(log(-view_z) * lights.cluster_factors.z - lights.cluster_factors.w));
|
||
}
|
||
|
||
fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32) -> u32 {
|
||
let xy = vec2<u32>(floor(frag_coord * lights.cluster_factors.xy));
|
||
let z_slice = view_z_to_z_slice(view_z);
|
||
return (xy.y * lights.cluster_dimensions.x + xy.x) * lights.cluster_dimensions.z + z_slice;
|
||
}
|
||
|
||
struct ClusterOffsetAndCount {
|
||
offset: u32;
|
||
count: u32;
|
||
};
|
||
|
||
fn unpack_offset_and_count(cluster_index: u32) -> ClusterOffsetAndCount {
|
||
let offset_and_count = cluster_offsets_and_counts.data[cluster_index >> 2u][cluster_index & ((1u << 2u) - 1u)];
|
||
var output: ClusterOffsetAndCount;
|
||
// The offset is stored in the upper 24 bits
|
||
output.offset = (offset_and_count >> 8u) & ((1u << 24u) - 1u);
|
||
// The count is stored in the lower 8 bits
|
||
output.count = offset_and_count & ((1u << 8u) - 1u);
|
||
return output;
|
||
}
|
||
|
||
fn get_light_id(index: u32) -> u32 {
|
||
// The index is correct but in cluster_light_index_lists we pack 4 u8s into a u32
|
||
// This means the index into cluster_light_index_lists is index / 4
|
||
let indices = cluster_light_index_lists.data[index >> 4u][(index >> 2u) & ((1u << 2u) - 1u)];
|
||
// And index % 4 gives the sub-index of the u8 within the u32 so we shift by 8 * sub-index
|
||
return (indices >> (8u * (index & ((1u << 2u) - 1u)))) & ((1u << 8u) - 1u);
|
||
}
|
||
|
||
fn point_light(
|
||
world_position: vec3<f32>, light: PointLight, roughness: f32, NdotV: f32, N: vec3<f32>, V: vec3<f32>,
|
||
R: vec3<f32>, F0: vec3<f32>, diffuseColor: vec3<f32>
|
||
) -> vec3<f32> {
|
||
let light_to_frag = light.position_radius.xyz - world_position.xyz;
|
||
let distance_square = dot(light_to_frag, light_to_frag);
|
||
let rangeAttenuation =
|
||
getDistanceAttenuation(distance_square, light.color_inverse_square_range.w);
|
||
|
||
// Specular.
|
||
// Representative Point Area Lights.
|
||
// see http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf p14-16
|
||
let a = roughness;
|
||
let centerToRay = dot(light_to_frag, R) * R - light_to_frag;
|
||
let closestPoint = light_to_frag + centerToRay * saturate(light.position_radius.w * inverseSqrt(dot(centerToRay, centerToRay)));
|
||
let LspecLengthInverse = inverseSqrt(dot(closestPoint, closestPoint));
|
||
let normalizationFactor = a / saturate(a + (light.position_radius.w * 0.5 * LspecLengthInverse));
|
||
let specularIntensity = normalizationFactor * normalizationFactor;
|
||
|
||
var L: vec3<f32> = closestPoint * LspecLengthInverse; // normalize() equivalent?
|
||
var H: vec3<f32> = normalize(L + V);
|
||
var NoL: f32 = saturate(dot(N, L));
|
||
var NoH: f32 = saturate(dot(N, H));
|
||
var LoH: f32 = saturate(dot(L, H));
|
||
|
||
let specular_light = specular(F0, roughness, H, NdotV, NoL, NoH, LoH, specularIntensity);
|
||
|
||
// Diffuse.
|
||
// Comes after specular since its NoL is used in the lighting equation.
|
||
L = normalize(light_to_frag);
|
||
H = normalize(L + V);
|
||
NoL = saturate(dot(N, L));
|
||
NoH = saturate(dot(N, H));
|
||
LoH = saturate(dot(L, H));
|
||
|
||
let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
|
||
|
||
// See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminanceEquation
|
||
// Lout = f(v,l) Φ / { 4 π d^2 }⟨n⋅l⟩
|
||
// where
|
||
// f(v,l) = (f_d(v,l) + f_r(v,l)) * light_color
|
||
// Φ is luminous power in lumens
|
||
// our rangeAttentuation = 1 / d^2 multiplied with an attenuation factor for smoothing at the edge of the non-physical maximum light radius
|
||
|
||
// For a point light, luminous intensity, I, in lumens per steradian is given by:
|
||
// I = Φ / 4 π
|
||
// The derivation of this can be seen here: https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
|
||
|
||
// NOTE: light.color.rgb is premultiplied with light.intensity / 4 π (which would be the luminous intensity) on the CPU
|
||
|
||
// TODO compensate for energy loss https://google.github.io/filament/Filament.html#materialsystem/improvingthebrdfs/energylossinspecularreflectance
|
||
|
||
return ((diffuse + specular_light) * light.color_inverse_square_range.rgb) * (rangeAttenuation * NoL);
|
||
}
|
||
|
||
fn directional_light(light: DirectionalLight, roughness: f32, NdotV: f32, normal: vec3<f32>, view: vec3<f32>, R: vec3<f32>, F0: vec3<f32>, diffuseColor: vec3<f32>) -> vec3<f32> {
|
||
let incident_light = light.direction_to_light.xyz;
|
||
|
||
let half_vector = normalize(incident_light + view);
|
||
let NoL = saturate(dot(normal, incident_light));
|
||
let NoH = saturate(dot(normal, half_vector));
|
||
let LoH = saturate(dot(incident_light, half_vector));
|
||
|
||
let diffuse = diffuseColor * Fd_Burley(roughness, NdotV, NoL, LoH);
|
||
let specularIntensity = 1.0;
|
||
let specular_light = specular(F0, roughness, half_vector, NdotV, NoL, NoH, LoH, specularIntensity);
|
||
|
||
return (specular_light + diffuse) * light.color.rgb * NoL;
|
||
}
|
||
|
||
fn fetch_point_shadow(light_id: u32, frag_position: vec4<f32>, surface_normal: vec3<f32>) -> f32 {
|
||
let light = point_lights.data[light_id];
|
||
|
||
// because the shadow maps align with the axes and the frustum planes are at 45 degrees
|
||
// we can get the worldspace depth by taking the largest absolute axis
|
||
let surface_to_light = light.position_radius.xyz - frag_position.xyz;
|
||
let surface_to_light_abs = abs(surface_to_light);
|
||
let distance_to_light = max(surface_to_light_abs.x, max(surface_to_light_abs.y, surface_to_light_abs.z));
|
||
|
||
// The normal bias here is already scaled by the texel size at 1 world unit from the light.
|
||
// The texel size increases proportionally with distance from the light so multiplying by
|
||
// distance to light scales the normal bias to the texel size at the fragment distance.
|
||
let normal_offset = light.shadow_normal_bias * distance_to_light * surface_normal.xyz;
|
||
let depth_offset = light.shadow_depth_bias * normalize(surface_to_light.xyz);
|
||
let offset_position = frag_position.xyz + normal_offset + depth_offset;
|
||
|
||
// similar largest-absolute-axis trick as above, but now with the offset fragment position
|
||
let frag_ls = light.position_radius.xyz - offset_position.xyz;
|
||
let abs_position_ls = abs(frag_ls);
|
||
let major_axis_magnitude = max(abs_position_ls.x, max(abs_position_ls.y, abs_position_ls.z));
|
||
|
||
// NOTE: These simplifications come from multiplying:
|
||
// projection * vec4(0, 0, -major_axis_magnitude, 1.0)
|
||
// and keeping only the terms that have any impact on the depth.
|
||
// Projection-agnostic approach:
|
||
let zw = -major_axis_magnitude * light.projection_lr.xy + light.projection_lr.zw;
|
||
let depth = zw.x / zw.y;
|
||
|
||
// do the lookup, using HW PCF and comparison
|
||
// NOTE: Due to the non-uniform control flow above, we must use the Level variant of
|
||
// textureSampleCompare to avoid undefined behaviour due to some of the fragments in
|
||
// a quad (2x2 fragments) being processed not being sampled, and this messing with
|
||
// mip-mapping functionality. The shadow maps have no mipmaps so Level just samples
|
||
// from LOD 0.
|
||
return textureSampleCompareLevel(point_shadow_textures, point_shadow_textures_sampler, frag_ls, i32(light_id), depth);
|
||
}
|
||
|
||
fn fetch_directional_shadow(light_id: u32, frag_position: vec4<f32>, surface_normal: vec3<f32>) -> f32 {
|
||
let light = lights.directional_lights[light_id];
|
||
|
||
// The normal bias is scaled to the texel size.
|
||
let normal_offset = light.shadow_normal_bias * surface_normal.xyz;
|
||
let depth_offset = light.shadow_depth_bias * light.direction_to_light.xyz;
|
||
let offset_position = vec4<f32>(frag_position.xyz + normal_offset + depth_offset, frag_position.w);
|
||
|
||
let offset_position_clip = light.view_projection * offset_position;
|
||
if (offset_position_clip.w <= 0.0) {
|
||
return 1.0;
|
||
}
|
||
let offset_position_ndc = offset_position_clip.xyz / offset_position_clip.w;
|
||
// No shadow outside the orthographic projection volume
|
||
if (any(offset_position_ndc.xy < vec2<f32>(-1.0)) || offset_position_ndc.z < 0.0
|
||
|| any(offset_position_ndc > vec3<f32>(1.0))) {
|
||
return 1.0;
|
||
}
|
||
|
||
// compute texture coordinates for shadow lookup, compensating for the Y-flip difference
|
||
// between the NDC and texture coordinates
|
||
let flip_correction = vec2<f32>(0.5, -0.5);
|
||
let light_local = offset_position_ndc.xy * flip_correction + vec2<f32>(0.5, 0.5);
|
||
|
||
let depth = offset_position_ndc.z;
|
||
// do the lookup, using HW PCF and comparison
|
||
// NOTE: Due to non-uniform control flow above, we must use the level variant of the texture
|
||
// sampler to avoid use of implicit derivatives causing possible undefined behavior.
|
||
return textureSampleCompareLevel(directional_shadow_textures, directional_shadow_textures_sampler, light_local, i32(light_id), depth);
|
||
}
|
||
|
||
fn hsv2rgb(hue: f32, saturation: f32, value: f32) -> vec3<f32> {
|
||
let rgb = clamp(
|
||
abs(
|
||
((hue * 6.0 + vec3<f32>(0.0, 4.0, 2.0)) % 6.0) - 3.0
|
||
) - 1.0,
|
||
vec3<f32>(0.0),
|
||
vec3<f32>(1.0)
|
||
);
|
||
|
||
return value * mix( vec3<f32>(1.0), rgb, vec3<f32>(saturation));
|
||
}
|
||
|
||
struct FragmentInput {
|
||
[[builtin(front_facing)]] is_front: bool;
|
||
[[builtin(position)]] frag_coord: vec4<f32>;
|
||
[[location(0)]] world_position: vec4<f32>;
|
||
[[location(1)]] world_normal: vec3<f32>;
|
||
[[location(2)]] uv: vec2<f32>;
|
||
#ifdef VERTEX_TANGENTS
|
||
[[location(3)]] world_tangent: vec4<f32>;
|
||
#endif
|
||
};
|
||
|
||
[[stage(fragment)]]
|
||
fn fragment(in: FragmentInput) -> [[location(0)]] vec4<f32> {
|
||
var output_color: vec4<f32> = material.base_color;
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u) {
|
||
output_color = output_color * textureSample(base_color_texture, base_color_sampler, in.uv);
|
||
}
|
||
|
||
// // NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_UNLIT_BIT) == 0u) {
|
||
// TODO use .a for exposure compensation in HDR
|
||
var emissive: vec4<f32> = material.emissive;
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_EMISSIVE_TEXTURE_BIT) != 0u) {
|
||
emissive = vec4<f32>(emissive.rgb * textureSample(emissive_texture, emissive_sampler, in.uv).rgb, 1.0);
|
||
}
|
||
|
||
// calculate non-linear roughness from linear perceptualRoughness
|
||
var metallic: f32 = material.metallic;
|
||
var perceptual_roughness: f32 = material.perceptual_roughness;
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
|
||
let metallic_roughness = textureSample(metallic_roughness_texture, metallic_roughness_sampler, in.uv);
|
||
// Sampling from GLTF standard channels for now
|
||
metallic = metallic * metallic_roughness.b;
|
||
perceptual_roughness = perceptual_roughness * metallic_roughness.g;
|
||
}
|
||
let roughness = perceptualRoughnessToRoughness(perceptual_roughness);
|
||
|
||
var occlusion: f32 = 1.0;
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
|
||
occlusion = textureSample(occlusion_texture, occlusion_sampler, in.uv).r;
|
||
}
|
||
|
||
var N: vec3<f32> = normalize(in.world_normal);
|
||
|
||
#ifdef VERTEX_TANGENTS
|
||
#ifdef STANDARDMATERIAL_NORMAL_MAP
|
||
var T: vec3<f32> = normalize(in.world_tangent.xyz - N * dot(in.world_tangent.xyz, N));
|
||
var B: vec3<f32> = cross(N, T) * in.world_tangent.w;
|
||
#endif
|
||
#endif
|
||
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u) {
|
||
if (!in.is_front) {
|
||
N = -N;
|
||
#ifdef VERTEX_TANGENTS
|
||
#ifdef STANDARDMATERIAL_NORMAL_MAP
|
||
T = -T;
|
||
B = -B;
|
||
#endif
|
||
#endif
|
||
}
|
||
}
|
||
|
||
#ifdef VERTEX_TANGENTS
|
||
#ifdef STANDARDMATERIAL_NORMAL_MAP
|
||
let TBN = mat3x3<f32>(T, B, N);
|
||
N = TBN * normalize(textureSample(normal_map_texture, normal_map_sampler, in.uv).rgb * 2.0 - 1.0);
|
||
#endif
|
||
#endif
|
||
|
||
if ((material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_OPAQUE) != 0u) {
|
||
// NOTE: If rendering as opaque, alpha should be ignored so set to 1.0
|
||
output_color.a = 1.0;
|
||
} elseif ((material.flags & STANDARD_MATERIAL_FLAGS_ALPHA_MODE_MASK) != 0u) {
|
||
if (output_color.a >= material.alpha_cutoff) {
|
||
// NOTE: If rendering as masked alpha and >= the cutoff, render as fully opaque
|
||
output_color.a = 1.0;
|
||
} else {
|
||
// NOTE: output_color.a < material.alpha_cutoff should not is not rendered
|
||
// NOTE: This and any other discards mean that early-z testing cannot be done!
|
||
discard;
|
||
}
|
||
}
|
||
|
||
var V: vec3<f32>;
|
||
if (view.projection[3].w != 1.0) { // If the projection is not orthographic
|
||
// Only valid for a perpective projection
|
||
V = normalize(view.world_position.xyz - in.world_position.xyz);
|
||
} else {
|
||
// Ortho view vec
|
||
V = normalize(vec3<f32>(view.view_proj[0].z, view.view_proj[1].z, view.view_proj[2].z));
|
||
}
|
||
|
||
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
|
||
let NdotV = max(dot(N, V), 0.0001);
|
||
|
||
// Remapping [0,1] reflectance to F0
|
||
// See https://google.github.io/filament/Filament.html#materialsystem/parameterization/remapping
|
||
let reflectance = material.reflectance;
|
||
let F0 = 0.16 * reflectance * reflectance * (1.0 - metallic) + output_color.rgb * metallic;
|
||
|
||
// Diffuse strength inversely related to metallicity
|
||
let diffuse_color = output_color.rgb * (1.0 - metallic);
|
||
|
||
let R = reflect(-V, N);
|
||
|
||
// accumulate color
|
||
var light_accum: vec3<f32> = vec3<f32>(0.0);
|
||
|
||
let view_z = dot(vec4<f32>(
|
||
view.inverse_view[0].z,
|
||
view.inverse_view[1].z,
|
||
view.inverse_view[2].z,
|
||
view.inverse_view[3].z
|
||
), in.world_position);
|
||
let cluster_index = fragment_cluster_index(in.frag_coord.xy, view_z);
|
||
let offset_and_count = unpack_offset_and_count(cluster_index);
|
||
for (var i: u32 = offset_and_count.offset; i < offset_and_count.offset + offset_and_count.count; i = i + 1u) {
|
||
let light_id = get_light_id(i);
|
||
let light = point_lights.data[light_id];
|
||
var shadow: f32 = 1.0;
|
||
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
|
||
&& (light.flags & POINT_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
|
||
shadow = fetch_point_shadow(light_id, in.world_position, in.world_normal);
|
||
}
|
||
let light_contrib = point_light(in.world_position.xyz, light, roughness, NdotV, N, V, R, F0, diffuse_color);
|
||
light_accum = light_accum + light_contrib * shadow;
|
||
}
|
||
|
||
let n_directional_lights = lights.n_directional_lights;
|
||
for (var i: u32 = 0u; i < n_directional_lights; i = i + 1u) {
|
||
let light = lights.directional_lights[i];
|
||
var shadow: f32 = 1.0;
|
||
if ((mesh.flags & MESH_FLAGS_SHADOW_RECEIVER_BIT) != 0u
|
||
&& (light.flags & DIRECTIONAL_LIGHT_FLAGS_SHADOWS_ENABLED_BIT) != 0u) {
|
||
shadow = fetch_directional_shadow(i, in.world_position, in.world_normal);
|
||
}
|
||
let light_contrib = directional_light(light, roughness, NdotV, N, V, R, F0, diffuse_color);
|
||
light_accum = light_accum + light_contrib * shadow;
|
||
}
|
||
|
||
let diffuse_ambient = EnvBRDFApprox(diffuse_color, 1.0, NdotV);
|
||
let specular_ambient = EnvBRDFApprox(F0, perceptual_roughness, NdotV);
|
||
|
||
output_color = vec4<f32>(
|
||
light_accum +
|
||
(diffuse_ambient + specular_ambient) * lights.ambient_color.rgb * occlusion +
|
||
emissive.rgb * output_color.a,
|
||
output_color.a);
|
||
|
||
#ifdef CLUSTERED_FORWARD_DEBUG
|
||
// Cluster allocation debug (using 'over' alpha blending)
|
||
let cluster_debug_mode = 1;
|
||
let cluster_overlay_alpha = 1.0;
|
||
if (cluster_debug_mode == 0) {
|
||
// NOTE: This debug mode visualises the z-slices
|
||
var z_slice: u32 = view_z_to_z_slice(view_z);
|
||
// A hack to make the colors alternate a bit more
|
||
if ((z_slice & 1u) == 1u) {
|
||
z_slice = z_slice + lights.cluster_dimensions.z / 2u;
|
||
}
|
||
let slice_color = hsv2rgb(f32(z_slice) / f32(lights.cluster_dimensions.z + 1u), 1.0, 0.5);
|
||
output_color = vec4<f32>(
|
||
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color,
|
||
output_color.a
|
||
);
|
||
} elseif (cluster_debug_mode == 1) {
|
||
// NOTE: This debug mode visualises the number of lights within the cluster that contains
|
||
// the fragment. It shows a sort of lighting complexity measure.
|
||
output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r
|
||
+ cluster_overlay_alpha * smoothStep(0.0, 16.0, f32(offset_and_count.count));
|
||
output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g
|
||
+ cluster_overlay_alpha * (1.0 - smoothStep(0.0, 16.0, f32(offset_and_count.count)));
|
||
}
|
||
#endif
|
||
|
||
// tone_mapping
|
||
output_color = vec4<f32>(reinhard_luminance(output_color.rgb), output_color.a);
|
||
// Gamma correction.
|
||
// Not needed with sRGB buffer
|
||
// output_color.rgb = pow(output_color.rgb, vec3(1.0 / 2.2));
|
||
}
|
||
|
||
return output_color;
|
||
}
|