bevy/crates/bevy_animation/src/lib.rs
Jan Hohenheim 6273227e09
Fix lints introduced in Rust beta 1.80 (#13899)
Resolves #13895

Mostly just involves being more explicit about which parts of the docs
belong to a list and which begin a new paragraph.
- found a few docs that were malformed because of exactly this, so I
fixed that by introducing a paragraph
- added indentation to nearly all multiline lists
- fixed a few minor typos
- added `#[allow(dead_code)]` to types that are needed to test
annotations but are never constructed
([here](https://github.com/bevyengine/bevy/pull/13899/files#diff-b02b63604e569c8577c491e7a2030d456886d8f6716eeccd46b11df8aac75dafR1514)
and
[here](https://github.com/bevyengine/bevy/pull/13899/files#diff-b02b63604e569c8577c491e7a2030d456886d8f6716eeccd46b11df8aac75dafR1523))
- verified that  `cargo +beta run -p ci -- lints` passes
- verified that `cargo +beta run -p ci -- test` passes
2024-06-17 17:22:01 +00:00

1388 lines
50 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
//! Animation for the game engine Bevy
mod animatable;
mod graph;
mod transition;
mod util;
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::hash::{Hash, Hasher};
use std::iter;
use std::ops::{Add, Mul};
use bevy_app::{App, Plugin, PostUpdate};
use bevy_asset::{Asset, AssetApp, Assets, Handle};
use bevy_core::Name;
use bevy_ecs::entity::MapEntities;
use bevy_ecs::prelude::*;
use bevy_ecs::reflect::ReflectMapEntities;
use bevy_math::{FloatExt, Quat, Vec3};
use bevy_reflect::Reflect;
use bevy_render::mesh::morph::MorphWeights;
use bevy_time::Time;
use bevy_transform::{prelude::Transform, TransformSystem};
use bevy_utils::hashbrown::HashMap;
use bevy_utils::{
tracing::{error, trace},
NoOpHash,
};
use fixedbitset::FixedBitSet;
use graph::{AnimationGraph, AnimationNodeIndex};
use petgraph::graph::NodeIndex;
use petgraph::Direction;
use prelude::{AnimationGraphAssetLoader, AnimationTransitions};
use thread_local::ThreadLocal;
use uuid::Uuid;
#[allow(missing_docs)]
pub mod prelude {
#[doc(hidden)]
pub use crate::{
animatable::*, graph::*, transition::*, AnimationClip, AnimationPlayer, AnimationPlugin,
Interpolation, Keyframes, VariableCurve,
};
}
use crate::transition::{advance_transitions, expire_completed_transitions};
/// The [UUID namespace] of animation targets (e.g. bones).
///
/// [UUID namespace]: https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)
pub static ANIMATION_TARGET_NAMESPACE: Uuid = Uuid::from_u128(0x3179f519d9274ff2b5966fd077023911);
/// List of keyframes for one of the attribute of a [`Transform`].
#[derive(Reflect, Clone, Debug)]
pub enum Keyframes {
/// Keyframes for rotation.
Rotation(Vec<Quat>),
/// Keyframes for translation.
Translation(Vec<Vec3>),
/// Keyframes for scale.
Scale(Vec<Vec3>),
/// Keyframes for morph target weights.
///
/// Note that in `.0`, each contiguous `target_count` values is a single
/// keyframe representing the weight values at given keyframe.
///
/// This follows the [glTF design].
///
/// [glTF design]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#animations
Weights(Vec<f32>),
}
impl Keyframes {
/// Returns the number of keyframes.
pub fn len(&self) -> usize {
match self {
Keyframes::Weights(vec) => vec.len(),
Keyframes::Translation(vec) | Keyframes::Scale(vec) => vec.len(),
Keyframes::Rotation(vec) => vec.len(),
}
}
/// Returns true if the number of keyframes is zero.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
}
/// Describes how an attribute of a [`Transform`] or [`MorphWeights`] should be animated.
///
/// `keyframe_timestamps` and `keyframes` should have the same length.
#[derive(Reflect, Clone, Debug)]
pub struct VariableCurve {
/// Timestamp for each of the keyframes.
pub keyframe_timestamps: Vec<f32>,
/// List of the keyframes.
///
/// The representation will depend on the interpolation type of this curve:
///
/// - for `Interpolation::Step` and `Interpolation::Linear`, each keyframe is a single value
/// - for `Interpolation::CubicSpline`, each keyframe is made of three values for `tangent_in`,
/// `keyframe_value` and `tangent_out`
pub keyframes: Keyframes,
/// Interpolation method to use between keyframes.
pub interpolation: Interpolation,
}
impl VariableCurve {
/// Find the index of the keyframe at or before the current time.
///
/// Returns [`None`] if the curve is finished or not yet started.
/// To be more precise, this returns [`None`] if the frame is at or past the last keyframe:
/// we cannot get the *next* keyframe to interpolate to in that case.
pub fn find_current_keyframe(&self, seek_time: f32) -> Option<usize> {
// An Ok(keyframe_index) result means an exact result was found by binary search
// An Err result means the keyframe was not found, and the index is the keyframe
// PERF: finding the current keyframe can be optimised
let search_result = self
.keyframe_timestamps
.binary_search_by(|probe| probe.partial_cmp(&seek_time).unwrap());
// Subtract one for zero indexing!
let last_keyframe = self.keyframe_timestamps.len() - 1;
// We want to find the index of the keyframe before the current time
// If the keyframe is past the second-to-last keyframe, the animation cannot be interpolated.
let step_start = match search_result {
// An exact match was found, and it is the last keyframe (or something has gone terribly wrong).
// This means that the curve is finished.
Ok(n) if n >= last_keyframe => return None,
// An exact match was found, and it is not the last keyframe.
Ok(i) => i,
// No exact match was found, and the seek_time is before the start of the animation.
// This occurs because the binary search returns the index of where we could insert a value
// without disrupting the order of the vector.
// If the value is less than the first element, the index will be 0.
Err(0) => return None,
// No exact match was found, and it was after the last keyframe.
// The curve is finished.
Err(n) if n > last_keyframe => return None,
// No exact match was found, so return the previous keyframe to interpolate from.
Err(i) => i - 1,
};
// Consumers need to be able to interpolate between the return keyframe and the next
assert!(step_start < self.keyframe_timestamps.len());
Some(step_start)
}
}
/// Interpolation method to use between keyframes.
#[derive(Reflect, Clone, Debug)]
pub enum Interpolation {
/// Linear interpolation between the two closest keyframes.
Linear,
/// Step interpolation, the value of the start keyframe is used.
Step,
/// Cubic spline interpolation. The value of the two closest keyframes is used, with the out
/// tangent of the start keyframe and the in tangent of the end keyframe.
CubicSpline,
}
/// A list of [`VariableCurve`]s and the [`AnimationTargetId`]s to which they
/// apply.
///
/// Because animation clips refer to targets by UUID, they can target any
/// [`AnimationTarget`] with that ID.
#[derive(Asset, Reflect, Clone, Debug, Default)]
pub struct AnimationClip {
curves: AnimationCurves,
duration: f32,
}
/// A mapping from [`AnimationTargetId`] (e.g. bone in a skinned mesh) to the
/// animation curves.
pub type AnimationCurves = HashMap<AnimationTargetId, Vec<VariableCurve>, NoOpHash>;
/// A unique [UUID] for an animation target (e.g. bone in a skinned mesh).
///
/// The [`AnimationClip`] asset and the [`AnimationTarget`] component both use
/// this to refer to targets (e.g. bones in a skinned mesh) to be animated.
///
/// When importing an armature or an animation clip, asset loaders typically use
/// the full path name from the armature to the bone to generate these UUIDs.
/// The ID is unique to the full path name and based only on the names. So, for
/// example, any imported armature with a bone at the root named `Hips` will
/// assign the same [`AnimationTargetId`] to its root bone. Likewise, any
/// imported animation clip that animates a root bone named `Hips` will
/// reference the same [`AnimationTargetId`]. Any animation is playable on any
/// armature as long as the bone names match, which allows for easy animation
/// retargeting.
///
/// Note that asset loaders generally use the *full* path name to generate the
/// [`AnimationTargetId`]. Thus a bone named `Chest` directly connected to a
/// bone named `Hips` will have a different ID from a bone named `Chest` that's
/// connected to a bone named `Stomach`.
///
/// [UUID]: https://en.wikipedia.org/wiki/Universally_unique_identifier
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Reflect, Debug)]
pub struct AnimationTargetId(pub Uuid);
impl Hash for AnimationTargetId {
fn hash<H: Hasher>(&self, state: &mut H) {
let (hi, lo) = self.0.as_u64_pair();
state.write_u64(hi ^ lo);
}
}
/// An entity that can be animated by an [`AnimationPlayer`].
///
/// These are frequently referred to as *bones* or *joints*, because they often
/// refer to individually-animatable parts of an armature.
///
/// Asset loaders for armatures are responsible for adding these as necessary.
/// Typically, they're generated from hashed versions of the entire name path
/// from the root of the armature to the bone. See the [`AnimationTargetId`]
/// documentation for more details.
///
/// By convention, asset loaders add [`AnimationTarget`] components to the
/// descendants of an [`AnimationPlayer`], as well as to the [`AnimationPlayer`]
/// entity itself, but Bevy doesn't require this in any way. So, for example,
/// it's entirely possible for an [`AnimationPlayer`] to animate a target that
/// it isn't an ancestor of. If you add a new bone to or delete a bone from an
/// armature at runtime, you may want to update the [`AnimationTarget`]
/// component as appropriate, as Bevy won't do this automatically.
///
/// Note that each entity can only be animated by one animation player at a
/// time. However, you can change [`AnimationTarget`]'s `player` property at
/// runtime to change which player is responsible for animating the entity.
#[derive(Clone, Copy, Component, Reflect)]
#[reflect(Component, MapEntities)]
pub struct AnimationTarget {
/// The ID of this animation target.
///
/// Typically, this is derived from the path.
pub id: AnimationTargetId,
/// The entity containing the [`AnimationPlayer`].
pub player: Entity,
}
impl AnimationClip {
#[inline]
/// [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
pub fn curves(&self) -> &AnimationCurves {
&self.curves
}
#[inline]
/// Get mutable references of [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
pub fn curves_mut(&mut self) -> &mut AnimationCurves {
&mut self.curves
}
/// Gets the curves for a single animation target.
///
/// Returns `None` if this clip doesn't animate the target.
#[inline]
pub fn curves_for_target(
&self,
target_id: AnimationTargetId,
) -> Option<&'_ Vec<VariableCurve>> {
self.curves.get(&target_id)
}
/// Gets mutable references of the curves for a single animation target.
///
/// Returns `None` if this clip doesn't animate the target.
#[inline]
pub fn curves_for_target_mut(
&mut self,
target_id: AnimationTargetId,
) -> Option<&'_ mut Vec<VariableCurve>> {
self.curves.get_mut(&target_id)
}
/// Duration of the clip, represented in seconds.
#[inline]
pub fn duration(&self) -> f32 {
self.duration
}
/// Set the duration of the clip in seconds.
#[inline]
pub fn set_duration(&mut self, duration_sec: f32) {
self.duration = duration_sec;
}
/// Adds a [`VariableCurve`] to an [`AnimationTarget`] named by an
/// [`AnimationTargetId`].
///
/// If the curve extends beyond the current duration of this clip, this
/// method lengthens this clip to include the entire time span that the
/// curve covers.
pub fn add_curve_to_target(&mut self, target_id: AnimationTargetId, curve: VariableCurve) {
// Update the duration of the animation by this curve duration if it's longer
self.duration = self
.duration
.max(*curve.keyframe_timestamps.last().unwrap_or(&0.0));
self.curves.entry(target_id).or_default().push(curve);
}
}
/// Repetition behavior of an animation.
#[derive(Reflect, Debug, PartialEq, Eq, Copy, Clone, Default)]
pub enum RepeatAnimation {
/// The animation will finish after running once.
#[default]
Never,
/// The animation will finish after running "n" times.
Count(u32),
/// The animation will never finish.
Forever,
}
/// An animation that an [`AnimationPlayer`] is currently either playing or was
/// playing, but is presently paused.
///
/// An stopped animation is considered no longer active.
#[derive(Debug, Clone, Copy, Reflect)]
pub struct ActiveAnimation {
/// The factor by which the weight from the [`AnimationGraph`] is multiplied.
weight: f32,
/// The actual weight of this animation this frame, taking the
/// [`AnimationGraph`] into account.
computed_weight: f32,
repeat: RepeatAnimation,
speed: f32,
/// Total time the animation has been played.
///
/// Note: Time does not increase when the animation is paused or after it has completed.
elapsed: f32,
/// The timestamp inside of the animation clip.
///
/// Note: This will always be in the range [0.0, animation clip duration]
seek_time: f32,
/// Number of times the animation has completed.
/// If the animation is playing in reverse, this increments when the animation passes the start.
completions: u32,
paused: bool,
}
impl Default for ActiveAnimation {
fn default() -> Self {
Self {
weight: 1.0,
computed_weight: 1.0,
repeat: RepeatAnimation::default(),
speed: 1.0,
elapsed: 0.0,
seek_time: 0.0,
completions: 0,
paused: false,
}
}
}
impl ActiveAnimation {
/// Check if the animation has finished, based on its repetition behavior and the number of times it has repeated.
///
/// Note: An animation with `RepeatAnimation::Forever` will never finish.
#[inline]
pub fn is_finished(&self) -> bool {
match self.repeat {
RepeatAnimation::Forever => false,
RepeatAnimation::Never => self.completions >= 1,
RepeatAnimation::Count(n) => self.completions >= n,
}
}
/// Update the animation given the delta time and the duration of the clip being played.
#[inline]
fn update(&mut self, delta: f32, clip_duration: f32) {
if self.is_finished() {
return;
}
self.elapsed += delta;
self.seek_time += delta * self.speed;
let over_time = self.speed > 0.0 && self.seek_time >= clip_duration;
let under_time = self.speed < 0.0 && self.seek_time < 0.0;
if over_time || under_time {
self.completions += 1;
if self.is_finished() {
return;
}
}
if self.seek_time >= clip_duration {
self.seek_time %= clip_duration;
}
// Note: assumes delta is never lower than -clip_duration
if self.seek_time < 0.0 {
self.seek_time += clip_duration;
}
}
/// Reset back to the initial state as if no time has elapsed.
pub fn replay(&mut self) {
self.completions = 0;
self.elapsed = 0.0;
self.seek_time = 0.0;
}
/// Returns the current weight of this animation.
pub fn weight(&self) -> f32 {
self.weight
}
/// Sets the weight of this animation.
pub fn set_weight(&mut self, weight: f32) {
self.weight = weight;
}
/// Pause the animation.
pub fn pause(&mut self) -> &mut Self {
self.paused = true;
self
}
/// Unpause the animation.
pub fn resume(&mut self) -> &mut Self {
self.paused = false;
self
}
/// Returns true if this animation is currently paused.
///
/// Note that paused animations are still [`ActiveAnimation`]s.
#[inline]
pub fn is_paused(&self) -> bool {
self.paused
}
/// Sets the repeat mode for this playing animation.
pub fn set_repeat(&mut self, repeat: RepeatAnimation) -> &mut Self {
self.repeat = repeat;
self
}
/// Marks this animation as repeating forever.
pub fn repeat(&mut self) -> &mut Self {
self.set_repeat(RepeatAnimation::Forever)
}
/// Returns the repeat mode assigned to this active animation.
pub fn repeat_mode(&self) -> RepeatAnimation {
self.repeat
}
/// Returns the number of times this animation has completed.
pub fn completions(&self) -> u32 {
self.completions
}
/// Returns true if the animation is playing in reverse.
pub fn is_playback_reversed(&self) -> bool {
self.speed < 0.0
}
/// Returns the speed of the animation playback.
pub fn speed(&self) -> f32 {
self.speed
}
/// Sets the speed of the animation playback.
pub fn set_speed(&mut self, speed: f32) -> &mut Self {
self.speed = speed;
self
}
/// Returns the amount of time the animation has been playing.
pub fn elapsed(&self) -> f32 {
self.elapsed
}
/// Returns the seek time of the animation.
///
/// This is nonnegative and no more than the clip duration.
pub fn seek_time(&self) -> f32 {
self.seek_time
}
/// Seeks to a specific time in the animation.
pub fn seek_to(&mut self, seek_time: f32) -> &mut Self {
self.seek_time = seek_time;
self
}
/// Seeks to the beginning of the animation.
pub fn rewind(&mut self) -> &mut Self {
self.seek_time = 0.0;
self
}
}
/// Animation controls
#[derive(Component, Default, Reflect)]
#[reflect(Component)]
pub struct AnimationPlayer {
/// We use a `BTreeMap` instead of a `HashMap` here to ensure a consistent
/// ordering when applying the animations.
active_animations: BTreeMap<AnimationNodeIndex, ActiveAnimation>,
blend_weights: HashMap<AnimationNodeIndex, f32>,
}
// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl Clone for AnimationPlayer {
fn clone(&self) -> Self {
Self {
active_animations: self.active_animations.clone(),
blend_weights: self.blend_weights.clone(),
}
}
fn clone_from(&mut self, source: &Self) {
self.active_animations.clone_from(&source.active_animations);
self.blend_weights.clone_from(&source.blend_weights);
}
}
/// The components that we might need to read or write during animation of each
/// animation target.
struct AnimationTargetContext<'a> {
entity: Entity,
target: &'a AnimationTarget,
name: Option<&'a Name>,
transform: Option<Mut<'a, Transform>>,
morph_weights: Option<Mut<'a, MorphWeights>>,
}
/// Information needed during the traversal of the animation graph in
/// [`advance_animations`].
#[derive(Default)]
pub struct AnimationGraphEvaluator {
/// The stack used for the depth-first search of the graph.
dfs_stack: Vec<NodeIndex>,
/// The list of visited nodes during the depth-first traversal.
dfs_visited: FixedBitSet,
/// Accumulated weights for each node.
weights: Vec<f32>,
}
thread_local! {
/// A cached per-thread copy of the graph evaluator.
///
/// Caching the evaluator lets us save allocation traffic from frame to
/// frame.
static ANIMATION_GRAPH_EVALUATOR: RefCell<AnimationGraphEvaluator> =
RefCell::new(AnimationGraphEvaluator::default());
}
impl AnimationPlayer {
/// Start playing an animation, restarting it if necessary.
pub fn start(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
self.active_animations.entry(animation).or_default()
}
/// Start playing an animation, unless the requested animation is already playing.
pub fn play(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
let playing_animation = self.active_animations.entry(animation).or_default();
playing_animation.weight = 1.0;
playing_animation
}
/// Stops playing the given animation, removing it from the list of playing
/// animations.
pub fn stop(&mut self, animation: AnimationNodeIndex) -> &mut Self {
self.active_animations.remove(&animation);
self
}
/// Stops all currently-playing animations.
pub fn stop_all(&mut self) -> &mut Self {
self.active_animations.clear();
self
}
/// Iterates through all animations that this [`AnimationPlayer`] is
/// currently playing.
pub fn playing_animations(
&self,
) -> impl Iterator<Item = (&AnimationNodeIndex, &ActiveAnimation)> {
self.active_animations.iter()
}
/// Iterates through all animations that this [`AnimationPlayer`] is
/// currently playing, mutably.
pub fn playing_animations_mut(
&mut self,
) -> impl Iterator<Item = (&AnimationNodeIndex, &mut ActiveAnimation)> {
self.active_animations.iter_mut()
}
/// Check if the given animation node is being played.
pub fn is_playing_animation(&self, animation: AnimationNodeIndex) -> bool {
self.active_animations.contains_key(&animation)
}
/// Check if all playing animations have finished, according to the repetition behavior.
pub fn all_finished(&self) -> bool {
self.active_animations
.values()
.all(|playing_animation| playing_animation.is_finished())
}
/// Check if all playing animations are paused.
#[doc(alias = "is_paused")]
pub fn all_paused(&self) -> bool {
self.active_animations
.values()
.all(|playing_animation| playing_animation.is_paused())
}
/// Resume all playing animations.
#[doc(alias = "pause")]
pub fn pause_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.pause();
}
self
}
/// Resume all active animations.
#[doc(alias = "resume")]
pub fn resume_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.resume();
}
self
}
/// Rewinds all active animations.
#[doc(alias = "rewind")]
pub fn rewind_all(&mut self) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
playing_animation.rewind();
}
self
}
/// Multiplies the speed of all active animations by the given factor.
#[doc(alias = "set_speed")]
pub fn adjust_speeds(&mut self, factor: f32) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
let new_speed = playing_animation.speed() * factor;
playing_animation.set_speed(new_speed);
}
self
}
/// Seeks all active animations forward or backward by the same amount.
///
/// To seek forward, pass a positive value; to seek negative, pass a
/// negative value. Values below 0.0 or beyond the end of the animation clip
/// are clamped appropriately.
#[doc(alias = "seek_to")]
pub fn seek_all_by(&mut self, amount: f32) -> &mut Self {
for (_, playing_animation) in self.playing_animations_mut() {
let new_time = playing_animation.seek_time();
playing_animation.seek_to(new_time + amount);
}
self
}
/// Returns the [`ActiveAnimation`] associated with the given animation
/// node if it's currently playing.
///
/// If the animation isn't currently active, returns `None`.
pub fn animation(&self, animation: AnimationNodeIndex) -> Option<&ActiveAnimation> {
self.active_animations.get(&animation)
}
/// Returns a mutable reference to the [`ActiveAnimation`] associated with
/// the given animation node if it's currently active.
///
/// If the animation isn't currently active, returns `None`.
pub fn animation_mut(&mut self, animation: AnimationNodeIndex) -> Option<&mut ActiveAnimation> {
self.active_animations.get_mut(&animation)
}
/// Returns true if the animation is currently playing or paused, or false
/// if the animation is stopped.
pub fn animation_is_playing(&self, animation: AnimationNodeIndex) -> bool {
self.active_animations.contains_key(&animation)
}
}
/// A system that advances the time for all playing animations.
pub fn advance_animations(
time: Res<Time>,
animation_clips: Res<Assets<AnimationClip>>,
animation_graphs: Res<Assets<AnimationGraph>>,
mut players: Query<(&mut AnimationPlayer, &Handle<AnimationGraph>)>,
animation_graph_evaluator: Local<ThreadLocal<RefCell<AnimationGraphEvaluator>>>,
) {
let delta_seconds = time.delta_seconds();
players
.par_iter_mut()
.for_each(|(mut player, graph_handle)| {
let Some(animation_graph) = animation_graphs.get(graph_handle) else {
return;
};
// Tick animations, and schedule them.
//
// We use a thread-local here so we can reuse allocations across
// frames.
let mut evaluator = animation_graph_evaluator.get_or_default().borrow_mut();
let AnimationPlayer {
ref mut active_animations,
ref blend_weights,
..
} = *player;
// Reset our state.
evaluator.reset(animation_graph.root, animation_graph.graph.node_count());
while let Some(node_index) = evaluator.dfs_stack.pop() {
// Skip if we've already visited this node.
if evaluator.dfs_visited.put(node_index.index()) {
continue;
}
let node = &animation_graph[node_index];
// Calculate weight from the graph.
let mut weight = node.weight;
for parent_index in animation_graph
.graph
.neighbors_directed(node_index, Direction::Incoming)
{
weight *= animation_graph[parent_index].weight;
}
evaluator.weights[node_index.index()] = weight;
if let Some(active_animation) = active_animations.get_mut(&node_index) {
// Tick the animation if necessary.
if !active_animation.paused {
if let Some(ref clip_handle) = node.clip {
if let Some(clip) = animation_clips.get(clip_handle) {
active_animation.update(delta_seconds, clip.duration);
}
}
}
weight *= active_animation.weight;
} else if let Some(&blend_weight) = blend_weights.get(&node_index) {
weight *= blend_weight;
}
// Write in the computed weight.
if let Some(active_animation) = active_animations.get_mut(&node_index) {
active_animation.computed_weight = weight;
}
// Push children.
evaluator.dfs_stack.extend(
animation_graph
.graph
.neighbors_directed(node_index, Direction::Outgoing),
);
}
});
}
/// A system that modifies animation targets (e.g. bones in a skinned mesh)
/// according to the currently-playing animation.
pub fn animate_targets(
clips: Res<Assets<AnimationClip>>,
graphs: Res<Assets<AnimationGraph>>,
players: Query<(&AnimationPlayer, &Handle<AnimationGraph>)>,
mut targets: Query<(
Entity,
&AnimationTarget,
Option<&Name>,
AnyOf<(&mut Transform, &mut MorphWeights)>,
)>,
) {
// We use two queries here: one read-only query for animation players and
// one read-write query for animation targets (e.g. bones). The
// `AnimationPlayer` query is read-only shared memory accessible from all
// animation targets, which are evaluated in parallel.
// Iterate over all animation targets in parallel.
targets
.par_iter_mut()
.for_each(|(id, target, name, (transform, morph_weights))| {
let Ok((animation_player, animation_graph_handle)) = players.get(target.player) else {
trace!(
"Either an animation player {:?} or a graph was missing for the target \
entity {:?} ({:?}); no animations will play this frame",
target.player,
id,
name,
);
return;
};
// The graph might not have loaded yet. Safely bail.
let Some(animation_graph) = graphs.get(animation_graph_handle) else {
return;
};
let mut target_context = AnimationTargetContext {
entity: id,
target,
name,
transform,
morph_weights,
};
// Apply the animations one after another. The way we accumulate
// weights ensures that the order we apply them in doesn't matter.
//
// Proof: Consider three animations A₀, A₁, A₂, … with weights w₀,
// w₁, w₂, … respectively. We seek the value:
//
// A₀w₀ + A₁w₁ + A₂w₂ + ⋯
//
// Defining lerp(a, b, t) = a + t(b - a), we have:
//
// ⎛ ⎛ w₁ ⎞ w₂ ⎞
// A₀w₀ + A₁w₁ + A₂w₂ + ⋯ = ⋯ lerp⎜lerp⎜A₀, A₁, ⎯⎯⎯⎯⎯⎯⎯⎯⎟, A₂, ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎟ ⋯
// ⎝ ⎝ w₀ + w₁⎠ w₀ + w₁ + w₂⎠
//
// Each step of the following loop corresponds to one of the lerp
// operations above.
let mut total_weight = 0.0;
for (&animation_graph_node_index, active_animation) in
animation_player.active_animations.iter()
{
if active_animation.weight == 0.0 {
continue;
}
let Some(clip) = animation_graph
.get(animation_graph_node_index)
.and_then(|animation_graph_node| animation_graph_node.clip.as_ref())
.and_then(|animation_clip_handle| clips.get(animation_clip_handle))
else {
continue;
};
let Some(curves) = clip.curves_for_target(target_context.target.id) else {
continue;
};
let weight = active_animation.computed_weight;
total_weight += weight;
target_context.apply(curves, weight / total_weight, active_animation.seek_time);
}
});
}
impl AnimationTargetContext<'_> {
/// Applies a clip to a single animation target according to the
/// [`AnimationTargetContext`].
fn apply(&mut self, curves: &[VariableCurve], weight: f32, seek_time: f32) {
for curve in curves {
// Some curves have only one keyframe used to set a transform
if curve.keyframe_timestamps.len() == 1 {
self.apply_single_keyframe(curve, weight);
return;
}
// Find the current keyframe
let Some(step_start) = curve.find_current_keyframe(seek_time) else {
return;
};
let timestamp_start = curve.keyframe_timestamps[step_start];
let timestamp_end = curve.keyframe_timestamps[step_start + 1];
// Compute how far we are through the keyframe, normalized to [0, 1]
let lerp = f32::inverse_lerp(timestamp_start, timestamp_end, seek_time);
self.apply_tweened_keyframe(
curve,
step_start,
lerp,
weight,
timestamp_end - timestamp_start,
);
}
}
fn apply_single_keyframe(&mut self, curve: &VariableCurve, weight: f32) {
match &curve.keyframes {
Keyframes::Rotation(keyframes) => {
if let Some(ref mut transform) = self.transform {
transform.rotation = transform.rotation.slerp(keyframes[0], weight);
}
}
Keyframes::Translation(keyframes) => {
if let Some(ref mut transform) = self.transform {
transform.translation = transform.translation.lerp(keyframes[0], weight);
}
}
Keyframes::Scale(keyframes) => {
if let Some(ref mut transform) = self.transform {
transform.scale = transform.scale.lerp(keyframes[0], weight);
}
}
Keyframes::Weights(keyframes) => {
let Some(ref mut morphs) = self.morph_weights else {
error!(
"Tried to animate morphs on {:?} ({:?}), but no `MorphWeights` was found",
self.entity, self.name,
);
return;
};
let target_count = morphs.weights().len();
lerp_morph_weights(
morphs.weights_mut(),
get_keyframe(target_count, keyframes, 0).iter().copied(),
weight,
);
}
}
}
fn apply_tweened_keyframe(
&mut self,
curve: &VariableCurve,
step_start: usize,
lerp: f32,
weight: f32,
duration: f32,
) {
match (&curve.interpolation, &curve.keyframes) {
(Interpolation::Step, Keyframes::Rotation(keyframes)) => {
if let Some(ref mut transform) = self.transform {
transform.rotation = transform.rotation.slerp(keyframes[step_start], weight);
}
}
(Interpolation::Linear, Keyframes::Rotation(keyframes)) => {
let Some(ref mut transform) = self.transform else {
return;
};
let rot_start = keyframes[step_start];
let mut rot_end = keyframes[step_start + 1];
// Choose the smallest angle for the rotation
if rot_end.dot(rot_start) < 0.0 {
rot_end = -rot_end;
}
// Rotations are using a spherical linear interpolation
let rot = rot_start.normalize().slerp(rot_end.normalize(), lerp);
transform.rotation = transform.rotation.slerp(rot, weight);
}
(Interpolation::CubicSpline, Keyframes::Rotation(keyframes)) => {
let Some(ref mut transform) = self.transform else {
return;
};
let value_start = keyframes[step_start * 3 + 1];
let tangent_out_start = keyframes[step_start * 3 + 2];
let tangent_in_end = keyframes[(step_start + 1) * 3];
let value_end = keyframes[(step_start + 1) * 3 + 1];
let result = cubic_spline_interpolation(
value_start,
tangent_out_start,
tangent_in_end,
value_end,
lerp,
duration,
);
transform.rotation = transform.rotation.slerp(result.normalize(), weight);
}
(Interpolation::Step, Keyframes::Translation(keyframes)) => {
if let Some(ref mut transform) = self.transform {
transform.translation =
transform.translation.lerp(keyframes[step_start], weight);
}
}
(Interpolation::Linear, Keyframes::Translation(keyframes)) => {
let Some(ref mut transform) = self.transform else {
return;
};
let translation_start = keyframes[step_start];
let translation_end = keyframes[step_start + 1];
let result = translation_start.lerp(translation_end, lerp);
transform.translation = transform.translation.lerp(result, weight);
}
(Interpolation::CubicSpline, Keyframes::Translation(keyframes)) => {
let Some(ref mut transform) = self.transform else {
return;
};
let value_start = keyframes[step_start * 3 + 1];
let tangent_out_start = keyframes[step_start * 3 + 2];
let tangent_in_end = keyframes[(step_start + 1) * 3];
let value_end = keyframes[(step_start + 1) * 3 + 1];
let result = cubic_spline_interpolation(
value_start,
tangent_out_start,
tangent_in_end,
value_end,
lerp,
duration,
);
transform.translation = transform.translation.lerp(result, weight);
}
(Interpolation::Step, Keyframes::Scale(keyframes)) => {
if let Some(ref mut transform) = self.transform {
transform.scale = transform.scale.lerp(keyframes[step_start], weight);
}
}
(Interpolation::Linear, Keyframes::Scale(keyframes)) => {
let Some(ref mut transform) = self.transform else {
return;
};
let scale_start = keyframes[step_start];
let scale_end = keyframes[step_start + 1];
let result = scale_start.lerp(scale_end, lerp);
transform.scale = transform.scale.lerp(result, weight);
}
(Interpolation::CubicSpline, Keyframes::Scale(keyframes)) => {
let Some(ref mut transform) = self.transform else {
return;
};
let value_start = keyframes[step_start * 3 + 1];
let tangent_out_start = keyframes[step_start * 3 + 2];
let tangent_in_end = keyframes[(step_start + 1) * 3];
let value_end = keyframes[(step_start + 1) * 3 + 1];
let result = cubic_spline_interpolation(
value_start,
tangent_out_start,
tangent_in_end,
value_end,
lerp,
duration,
);
transform.scale = transform.scale.lerp(result, weight);
}
(Interpolation::Step, Keyframes::Weights(keyframes)) => {
let Some(ref mut morphs) = self.morph_weights else {
return;
};
let target_count = morphs.weights().len();
let morph_start = get_keyframe(target_count, keyframes, step_start);
lerp_morph_weights(morphs.weights_mut(), morph_start.iter().copied(), weight);
}
(Interpolation::Linear, Keyframes::Weights(keyframes)) => {
let Some(ref mut morphs) = self.morph_weights else {
return;
};
let target_count = morphs.weights().len();
let morph_start = get_keyframe(target_count, keyframes, step_start);
let morph_end = get_keyframe(target_count, keyframes, step_start + 1);
let result = morph_start
.iter()
.zip(morph_end)
.map(|(a, b)| a.lerp(*b, lerp));
lerp_morph_weights(morphs.weights_mut(), result, weight);
}
(Interpolation::CubicSpline, Keyframes::Weights(keyframes)) => {
let Some(ref mut morphs) = self.morph_weights else {
return;
};
let target_count = morphs.weights().len();
let morph_start = get_keyframe(target_count, keyframes, step_start * 3 + 1);
let tangents_out_start = get_keyframe(target_count, keyframes, step_start * 3 + 2);
let tangents_in_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3);
let morph_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3 + 1);
let result = morph_start
.iter()
.zip(tangents_out_start)
.zip(tangents_in_end)
.zip(morph_end)
.map(
|(((&value_start, &tangent_out_start), &tangent_in_end), &value_end)| {
cubic_spline_interpolation(
value_start,
tangent_out_start,
tangent_in_end,
value_end,
lerp,
duration,
)
},
);
lerp_morph_weights(morphs.weights_mut(), result, weight);
}
}
}
}
/// Update `weights` based on weights in `keyframe` with a linear interpolation
/// on `key_lerp`.
fn lerp_morph_weights(weights: &mut [f32], keyframe: impl Iterator<Item = f32>, key_lerp: f32) {
let zipped = weights.iter_mut().zip(keyframe);
for (morph_weight, keyframe) in zipped {
*morph_weight = morph_weight.lerp(keyframe, key_lerp);
}
}
/// Extract a keyframe from a list of keyframes by index.
///
/// # Panics
///
/// When `key_index * target_count` is larger than `keyframes`
///
/// This happens when `keyframes` is not formatted as described in
/// [`Keyframes::Weights`]. A possible cause is [`AnimationClip`] not being
/// meant to be used for the [`MorphWeights`] of the entity it's being applied to.
fn get_keyframe(target_count: usize, keyframes: &[f32], key_index: usize) -> &[f32] {
let start = target_count * key_index;
let end = target_count * (key_index + 1);
&keyframes[start..end]
}
/// Helper function for cubic spline interpolation.
fn cubic_spline_interpolation<T>(
value_start: T,
tangent_out_start: T,
tangent_in_end: T,
value_end: T,
lerp: f32,
step_duration: f32,
) -> T
where
T: Mul<f32, Output = T> + Add<Output = T>,
{
value_start * (2.0 * lerp.powi(3) - 3.0 * lerp.powi(2) + 1.0)
+ tangent_out_start * (step_duration) * (lerp.powi(3) - 2.0 * lerp.powi(2) + lerp)
+ value_end * (-2.0 * lerp.powi(3) + 3.0 * lerp.powi(2))
+ tangent_in_end * step_duration * (lerp.powi(3) - lerp.powi(2))
}
/// Adds animation support to an app
#[derive(Default)]
pub struct AnimationPlugin;
impl Plugin for AnimationPlugin {
fn build(&self, app: &mut App) {
app.init_asset::<AnimationClip>()
.init_asset::<AnimationGraph>()
.init_asset_loader::<AnimationGraphAssetLoader>()
.register_asset_reflect::<AnimationClip>()
.register_asset_reflect::<AnimationGraph>()
.register_type::<AnimationPlayer>()
.register_type::<AnimationTarget>()
.register_type::<AnimationTransitions>()
.register_type::<NodeIndex>()
.add_systems(
PostUpdate,
(
advance_transitions,
advance_animations,
animate_targets,
expire_completed_transitions,
)
.chain()
.before(TransformSystem::TransformPropagate),
);
}
}
impl AnimationTargetId {
/// Creates a new [`AnimationTargetId`] by hashing a list of names.
///
/// Typically, this will be the path from the animation root to the
/// animation target (e.g. bone) that is to be animated.
pub fn from_names<'a>(names: impl Iterator<Item = &'a Name>) -> Self {
let mut blake3 = blake3::Hasher::new();
blake3.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
for name in names {
blake3.update(name.as_bytes());
}
let hash = blake3.finalize().as_bytes()[0..16].try_into().unwrap();
Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
}
/// Creates a new [`AnimationTargetId`] by hashing a single name.
pub fn from_name(name: &Name) -> Self {
Self::from_names(iter::once(name))
}
}
impl From<&Name> for AnimationTargetId {
fn from(name: &Name) -> Self {
AnimationTargetId::from_name(name)
}
}
impl MapEntities for AnimationTarget {
fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
self.player = entity_mapper.map_entity(self.player);
}
}
impl AnimationGraphEvaluator {
// Starts a new depth-first search.
fn reset(&mut self, root: AnimationNodeIndex, node_count: usize) {
self.dfs_stack.clear();
self.dfs_stack.push(root);
self.dfs_visited.grow(node_count);
self.dfs_visited.clear();
self.weights.clear();
self.weights.extend(iter::repeat(0.0).take(node_count));
}
}
#[cfg(test)]
mod tests {
use crate::VariableCurve;
use bevy_math::Vec3;
fn test_variable_curve() -> VariableCurve {
let keyframe_timestamps = vec![1.0, 2.0, 3.0, 4.0];
let keyframes = vec![
Vec3::ONE * 0.0,
Vec3::ONE * 3.0,
Vec3::ONE * 6.0,
Vec3::ONE * 9.0,
];
let interpolation = crate::Interpolation::Linear;
let variable_curve = VariableCurve {
keyframe_timestamps,
keyframes: crate::Keyframes::Translation(keyframes),
interpolation,
};
assert!(variable_curve.keyframe_timestamps.len() == variable_curve.keyframes.len());
// f32 doesn't impl Ord so we can't easily sort it
let mut maybe_last_timestamp = None;
for current_timestamp in &variable_curve.keyframe_timestamps {
assert!(current_timestamp.is_finite());
if let Some(last_timestamp) = maybe_last_timestamp {
assert!(current_timestamp > last_timestamp);
}
maybe_last_timestamp = Some(current_timestamp);
}
variable_curve
}
#[test]
fn find_current_keyframe_is_in_bounds() {
let curve = test_variable_curve();
let min_time = *curve.keyframe_timestamps.first().unwrap();
// We will always get none at times at or past the second last keyframe
let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
let max_time = curve.keyframe_timestamps[second_last_keyframe];
let elapsed_time = max_time - min_time;
let n_keyframes = curve.keyframe_timestamps.len();
let n_test_points = 5;
for i in 0..=n_test_points {
// Get a value between 0 and 1
let normalized_time = i as f32 / n_test_points as f32;
let seek_time = min_time + normalized_time * elapsed_time;
assert!(seek_time >= min_time);
assert!(seek_time <= max_time);
let maybe_current_keyframe = curve.find_current_keyframe(seek_time);
assert!(
maybe_current_keyframe.is_some(),
"Seek time: {seek_time}, Min time: {min_time}, Max time: {max_time}"
);
// We cannot return the last keyframe,
// because we want to interpolate between the current and next keyframe
assert!(maybe_current_keyframe.unwrap() < n_keyframes);
}
}
#[test]
fn find_current_keyframe_returns_none_on_unstarted_animations() {
let curve = test_variable_curve();
let min_time = *curve.keyframe_timestamps.first().unwrap();
let seek_time = 0.0;
assert!(seek_time < min_time);
let maybe_keyframe = curve.find_current_keyframe(seek_time);
assert!(
maybe_keyframe.is_none(),
"Seek time: {seek_time}, Minimum time: {min_time}"
);
}
#[test]
fn find_current_keyframe_returns_none_on_finished_animation() {
let curve = test_variable_curve();
let max_time = *curve.keyframe_timestamps.last().unwrap();
assert!(max_time < f32::INFINITY);
let maybe_keyframe = curve.find_current_keyframe(f32::INFINITY);
assert!(maybe_keyframe.is_none());
let maybe_keyframe = curve.find_current_keyframe(max_time);
assert!(maybe_keyframe.is_none());
}
#[test]
fn second_last_keyframe_is_found_correctly() {
let curve = test_variable_curve();
// Exact time match
let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
let second_last_time = curve.keyframe_timestamps[second_last_keyframe];
let maybe_keyframe = curve.find_current_keyframe(second_last_time);
assert!(maybe_keyframe.unwrap() == second_last_keyframe);
// Inexact match, between the last and second last frames
let seek_time = second_last_time + 0.001;
let last_time = curve.keyframe_timestamps[second_last_keyframe + 1];
assert!(seek_time < last_time);
let maybe_keyframe = curve.find_current_keyframe(seek_time);
assert!(maybe_keyframe.unwrap() == second_last_keyframe);
}
#[test]
fn exact_keyframe_matches_are_found_correctly() {
let curve = test_variable_curve();
let second_last_keyframe = curve.keyframes.len() - 2;
for i in 0..=second_last_keyframe {
let seek_time = curve.keyframe_timestamps[i];
let keyframe = curve.find_current_keyframe(seek_time).unwrap();
assert!(keyframe == i);
}
}
#[test]
fn exact_and_inexact_keyframes_correspond() {
let curve = test_variable_curve();
let second_last_keyframe = curve.keyframes.len() - 2;
for i in 0..=second_last_keyframe {
let seek_time = curve.keyframe_timestamps[i];
let exact_keyframe = curve.find_current_keyframe(seek_time).unwrap();
let inexact_seek_time = seek_time + 0.0001;
let final_time = *curve.keyframe_timestamps.last().unwrap();
assert!(inexact_seek_time < final_time);
let inexact_keyframe = curve.find_current_keyframe(inexact_seek_time).unwrap();
assert!(exact_keyframe == inexact_keyframe);
}
}
}