mirror of
https://github.com/bevyengine/bevy
synced 2024-12-20 01:53:12 +00:00
cb0db07c5b
# Objective Unfortunately, there are three issues with my changes introduced by #7784. 1. The changes left some dead code. This is already taken care of here: #7875. 2. Disabling prepass causes failures because the shadow mapping relies on the `PrepassPlugin` now. 3. Custom materials use the `prepass.wgsl` shader, but this does not always define a fragment entry point. This PR fixes 2. and 3. and resolves #7879. ## Solution - Add a regression test with disabled prepass. - Split `PrepassPlugin` into two plugins: - `PrepassPipelinePlugin` contains the part that is required for the shadow mapping to work and is unconditionally added. - `PrepassPlugin` now only adds the systems and resources required for the "real" prepasses. - Add a noop fragment entry point to `prepass.wgsl`, used if `NORMAL_PASS` is not defined. Co-authored-by: Edgar Geier <geieredgar@gmail.com>
673 lines
24 KiB
Rust
673 lines
24 KiB
Rust
use crate::{
|
|
render, AlphaMode, DrawMesh, DrawPrepass, EnvironmentMapLight, MeshPipeline, MeshPipelineKey,
|
|
MeshUniform, PrepassPipelinePlugin, PrepassPlugin, RenderLightSystems, SetMeshBindGroup,
|
|
SetMeshViewBindGroup, Shadow,
|
|
};
|
|
use bevy_app::{App, IntoSystemAppConfig, Plugin};
|
|
use bevy_asset::{AddAsset, AssetEvent, AssetServer, Assets, Handle};
|
|
use bevy_core_pipeline::{
|
|
core_3d::{AlphaMask3d, Opaque3d, Transparent3d},
|
|
tonemapping::{DebandDither, Tonemapping},
|
|
};
|
|
use bevy_derive::{Deref, DerefMut};
|
|
use bevy_ecs::{
|
|
prelude::*,
|
|
system::{
|
|
lifetimeless::{Read, SRes},
|
|
SystemParamItem,
|
|
},
|
|
};
|
|
use bevy_reflect::TypeUuid;
|
|
use bevy_render::{
|
|
extract_component::ExtractComponentPlugin,
|
|
mesh::{Mesh, MeshVertexBufferLayout},
|
|
prelude::Image,
|
|
render_asset::{PrepareAssetSet, RenderAssets},
|
|
render_phase::{
|
|
AddRenderCommand, DrawFunctions, PhaseItem, RenderCommand, RenderCommandResult,
|
|
RenderPhase, SetItemPipeline, TrackedRenderPass,
|
|
},
|
|
render_resource::{
|
|
AsBindGroup, AsBindGroupError, BindGroup, BindGroupLayout, OwnedBindingResource,
|
|
PipelineCache, RenderPipelineDescriptor, Shader, ShaderRef, SpecializedMeshPipeline,
|
|
SpecializedMeshPipelineError, SpecializedMeshPipelines,
|
|
},
|
|
renderer::RenderDevice,
|
|
texture::FallbackImage,
|
|
view::{ExtractedView, Msaa, VisibleEntities},
|
|
Extract, ExtractSchedule, RenderApp, RenderSet,
|
|
};
|
|
use bevy_utils::{tracing::error, HashMap, HashSet};
|
|
use std::hash::Hash;
|
|
use std::marker::PhantomData;
|
|
|
|
/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`](crate::MaterialMeshBundle)
|
|
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
|
|
/// way to render [`Mesh`] entities with custom shader logic.
|
|
///
|
|
/// Materials must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
|
|
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
|
|
///
|
|
/// Materials must also implement [`TypeUuid`] so they can be treated as an [`Asset`](bevy_asset::Asset).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// Here is a simple Material implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
|
|
/// check out the [`AsBindGroup`] documentation.
|
|
/// ```
|
|
/// # use bevy_pbr::{Material, MaterialMeshBundle};
|
|
/// # use bevy_ecs::prelude::*;
|
|
/// # use bevy_reflect::TypeUuid;
|
|
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderRef}, texture::Image, color::Color};
|
|
/// # use bevy_asset::{Handle, AssetServer, Assets};
|
|
///
|
|
/// #[derive(AsBindGroup, TypeUuid, Debug, Clone)]
|
|
/// #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
|
|
/// pub struct CustomMaterial {
|
|
/// // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
|
|
/// // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
|
|
/// #[uniform(0)]
|
|
/// color: Color,
|
|
/// // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
|
|
/// // add the sampler attribute with a different binding index.
|
|
/// #[texture(1)]
|
|
/// #[sampler(2)]
|
|
/// color_texture: Handle<Image>,
|
|
/// }
|
|
///
|
|
/// // All functions on `Material` have default impls. You only need to implement the
|
|
/// // functions that are relevant for your material.
|
|
/// impl Material for CustomMaterial {
|
|
/// fn fragment_shader() -> ShaderRef {
|
|
/// "shaders/custom_material.wgsl".into()
|
|
/// }
|
|
/// }
|
|
///
|
|
/// // Spawn an entity using `CustomMaterial`.
|
|
/// fn setup(mut commands: Commands, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>) {
|
|
/// commands.spawn(MaterialMeshBundle {
|
|
/// material: materials.add(CustomMaterial {
|
|
/// color: Color::RED,
|
|
/// color_texture: asset_server.load("some_image.png"),
|
|
/// }),
|
|
/// ..Default::default()
|
|
/// });
|
|
/// }
|
|
/// ```
|
|
/// In WGSL shaders, the material's binding would look like this:
|
|
///
|
|
/// ```wgsl
|
|
/// @group(1) @binding(0)
|
|
/// var<uniform> color: vec4<f32>;
|
|
/// @group(1) @binding(1)
|
|
/// var color_texture: texture_2d<f32>;
|
|
/// @group(1) @binding(2)
|
|
/// var color_sampler: sampler;
|
|
/// ```
|
|
pub trait Material: AsBindGroup + Send + Sync + Clone + TypeUuid + Sized + 'static {
|
|
/// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
|
|
/// will be used.
|
|
fn vertex_shader() -> ShaderRef {
|
|
ShaderRef::Default
|
|
}
|
|
|
|
/// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
|
|
/// will be used.
|
|
#[allow(unused_variables)]
|
|
fn fragment_shader() -> ShaderRef {
|
|
ShaderRef::Default
|
|
}
|
|
|
|
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
|
|
#[inline]
|
|
fn alpha_mode(&self) -> AlphaMode {
|
|
AlphaMode::Opaque
|
|
}
|
|
|
|
#[inline]
|
|
/// Add a bias to the view depth of the mesh which can be used to force a specific render order
|
|
/// for meshes with equal depth, to avoid z-fighting.
|
|
fn depth_bias(&self) -> f32 {
|
|
0.0
|
|
}
|
|
|
|
/// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the default prepass vertex shader
|
|
/// will be used.
|
|
fn prepass_vertex_shader() -> ShaderRef {
|
|
ShaderRef::Default
|
|
}
|
|
|
|
/// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the default prepass fragment shader
|
|
/// will be used.
|
|
#[allow(unused_variables)]
|
|
fn prepass_fragment_shader() -> ShaderRef {
|
|
ShaderRef::Default
|
|
}
|
|
|
|
/// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's
|
|
/// [`MaterialPipelineKey`] and [`MeshVertexBufferLayout`] as input.
|
|
#[allow(unused_variables)]
|
|
#[inline]
|
|
fn specialize(
|
|
pipeline: &MaterialPipeline<Self>,
|
|
descriptor: &mut RenderPipelineDescriptor,
|
|
layout: &MeshVertexBufferLayout,
|
|
key: MaterialPipelineKey<Self>,
|
|
) -> Result<(), SpecializedMeshPipelineError> {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material`]
|
|
/// asset type.
|
|
pub struct MaterialPlugin<M: Material> {
|
|
/// Controls if the prepass is enabled for the Material.
|
|
/// For more information about what a prepass is, see the [`bevy_core_pipeline::prepass`] docs.
|
|
///
|
|
/// When it is enabled, it will automatically add the [`PrepassPlugin`]
|
|
/// required to make the prepass work on this Material.
|
|
pub prepass_enabled: bool,
|
|
pub _marker: PhantomData<M>,
|
|
}
|
|
|
|
impl<M: Material> Default for MaterialPlugin<M> {
|
|
fn default() -> Self {
|
|
Self {
|
|
prepass_enabled: true,
|
|
_marker: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M: Material> Plugin for MaterialPlugin<M>
|
|
where
|
|
M::Data: PartialEq + Eq + Hash + Clone,
|
|
{
|
|
fn build(&self, app: &mut App) {
|
|
app.add_asset::<M>()
|
|
.add_plugin(ExtractComponentPlugin::<Handle<M>>::extract_visible());
|
|
|
|
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
|
|
render_app
|
|
.init_resource::<DrawFunctions<Shadow>>()
|
|
.add_render_command::<Shadow, DrawPrepass<M>>()
|
|
.add_render_command::<Transparent3d, DrawMaterial<M>>()
|
|
.add_render_command::<Opaque3d, DrawMaterial<M>>()
|
|
.add_render_command::<AlphaMask3d, DrawMaterial<M>>()
|
|
.init_resource::<MaterialPipeline<M>>()
|
|
.init_resource::<ExtractedMaterials<M>>()
|
|
.init_resource::<RenderMaterials<M>>()
|
|
.init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
|
|
.add_system(extract_materials::<M>.in_schedule(ExtractSchedule))
|
|
.add_system(
|
|
prepare_materials::<M>
|
|
.in_set(RenderSet::Prepare)
|
|
.after(PrepareAssetSet::PreAssetPrepare),
|
|
)
|
|
.add_system(render::queue_shadows::<M>.in_set(RenderLightSystems::QueueShadows))
|
|
.add_system(queue_material_meshes::<M>.in_set(RenderSet::Queue));
|
|
}
|
|
|
|
// PrepassPipelinePlugin is required for shadow mapping and the optional PrepassPlugin
|
|
app.add_plugin(PrepassPipelinePlugin::<M>::default());
|
|
|
|
if self.prepass_enabled {
|
|
app.add_plugin(PrepassPlugin::<M>::default());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A key uniquely identifying a specialized [`MaterialPipeline`].
|
|
pub struct MaterialPipelineKey<M: Material> {
|
|
pub mesh_key: MeshPipelineKey,
|
|
pub bind_group_data: M::Data,
|
|
}
|
|
|
|
impl<M: Material> Eq for MaterialPipelineKey<M> where M::Data: PartialEq {}
|
|
|
|
impl<M: Material> PartialEq for MaterialPipelineKey<M>
|
|
where
|
|
M::Data: PartialEq,
|
|
{
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
|
|
}
|
|
}
|
|
|
|
impl<M: Material> Clone for MaterialPipelineKey<M>
|
|
where
|
|
M::Data: Clone,
|
|
{
|
|
fn clone(&self) -> Self {
|
|
Self {
|
|
mesh_key: self.mesh_key,
|
|
bind_group_data: self.bind_group_data.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M: Material> Hash for MaterialPipelineKey<M>
|
|
where
|
|
M::Data: Hash,
|
|
{
|
|
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
|
|
self.mesh_key.hash(state);
|
|
self.bind_group_data.hash(state);
|
|
}
|
|
}
|
|
|
|
/// Render pipeline data for a given [`Material`].
|
|
#[derive(Resource)]
|
|
pub struct MaterialPipeline<M: Material> {
|
|
pub mesh_pipeline: MeshPipeline,
|
|
pub material_layout: BindGroupLayout,
|
|
pub vertex_shader: Option<Handle<Shader>>,
|
|
pub fragment_shader: Option<Handle<Shader>>,
|
|
marker: PhantomData<M>,
|
|
}
|
|
|
|
impl<M: Material> Clone for MaterialPipeline<M> {
|
|
fn clone(&self) -> Self {
|
|
Self {
|
|
mesh_pipeline: self.mesh_pipeline.clone(),
|
|
material_layout: self.material_layout.clone(),
|
|
vertex_shader: self.vertex_shader.clone(),
|
|
fragment_shader: self.fragment_shader.clone(),
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M: Material> SpecializedMeshPipeline for MaterialPipeline<M>
|
|
where
|
|
M::Data: PartialEq + Eq + Hash + Clone,
|
|
{
|
|
type Key = MaterialPipelineKey<M>;
|
|
|
|
fn specialize(
|
|
&self,
|
|
key: Self::Key,
|
|
layout: &MeshVertexBufferLayout,
|
|
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
|
|
let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
|
|
if let Some(vertex_shader) = &self.vertex_shader {
|
|
descriptor.vertex.shader = vertex_shader.clone();
|
|
}
|
|
|
|
if let Some(fragment_shader) = &self.fragment_shader {
|
|
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
|
|
}
|
|
|
|
descriptor.layout.insert(1, self.material_layout.clone());
|
|
|
|
M::specialize(self, &mut descriptor, layout, key)?;
|
|
Ok(descriptor)
|
|
}
|
|
}
|
|
|
|
impl<M: Material> FromWorld for MaterialPipeline<M> {
|
|
fn from_world(world: &mut World) -> Self {
|
|
let asset_server = world.resource::<AssetServer>();
|
|
let render_device = world.resource::<RenderDevice>();
|
|
|
|
MaterialPipeline {
|
|
mesh_pipeline: world.resource::<MeshPipeline>().clone(),
|
|
material_layout: M::bind_group_layout(render_device),
|
|
vertex_shader: match M::vertex_shader() {
|
|
ShaderRef::Default => None,
|
|
ShaderRef::Handle(handle) => Some(handle),
|
|
ShaderRef::Path(path) => Some(asset_server.load(path)),
|
|
},
|
|
fragment_shader: match M::fragment_shader() {
|
|
ShaderRef::Default => None,
|
|
ShaderRef::Handle(handle) => Some(handle),
|
|
ShaderRef::Path(path) => Some(asset_server.load(path)),
|
|
},
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
type DrawMaterial<M> = (
|
|
SetItemPipeline,
|
|
SetMeshViewBindGroup<0>,
|
|
SetMaterialBindGroup<M, 1>,
|
|
SetMeshBindGroup<2>,
|
|
DrawMesh,
|
|
);
|
|
|
|
/// Sets the bind group for a given [`Material`] at the configured `I` index.
|
|
pub struct SetMaterialBindGroup<M: Material, const I: usize>(PhantomData<M>);
|
|
impl<P: PhaseItem, M: Material, const I: usize> RenderCommand<P> for SetMaterialBindGroup<M, I> {
|
|
type Param = SRes<RenderMaterials<M>>;
|
|
type ViewWorldQuery = ();
|
|
type ItemWorldQuery = Read<Handle<M>>;
|
|
|
|
#[inline]
|
|
fn render<'w>(
|
|
_item: &P,
|
|
_view: (),
|
|
material_handle: &'_ Handle<M>,
|
|
materials: SystemParamItem<'w, '_, Self::Param>,
|
|
pass: &mut TrackedRenderPass<'w>,
|
|
) -> RenderCommandResult {
|
|
let material = materials.into_inner().get(material_handle).unwrap();
|
|
pass.set_bind_group(I, &material.bind_group, &[]);
|
|
RenderCommandResult::Success
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn queue_material_meshes<M: Material>(
|
|
opaque_draw_functions: Res<DrawFunctions<Opaque3d>>,
|
|
alpha_mask_draw_functions: Res<DrawFunctions<AlphaMask3d>>,
|
|
transparent_draw_functions: Res<DrawFunctions<Transparent3d>>,
|
|
material_pipeline: Res<MaterialPipeline<M>>,
|
|
mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
|
|
pipeline_cache: Res<PipelineCache>,
|
|
msaa: Res<Msaa>,
|
|
render_meshes: Res<RenderAssets<Mesh>>,
|
|
render_materials: Res<RenderMaterials<M>>,
|
|
material_meshes: Query<(&Handle<M>, &Handle<Mesh>, &MeshUniform)>,
|
|
images: Res<RenderAssets<Image>>,
|
|
mut views: Query<(
|
|
&ExtractedView,
|
|
&VisibleEntities,
|
|
Option<&Tonemapping>,
|
|
Option<&DebandDither>,
|
|
Option<&EnvironmentMapLight>,
|
|
&mut RenderPhase<Opaque3d>,
|
|
&mut RenderPhase<AlphaMask3d>,
|
|
&mut RenderPhase<Transparent3d>,
|
|
)>,
|
|
) where
|
|
M::Data: PartialEq + Eq + Hash + Clone,
|
|
{
|
|
for (
|
|
view,
|
|
visible_entities,
|
|
tonemapping,
|
|
dither,
|
|
environment_map,
|
|
mut opaque_phase,
|
|
mut alpha_mask_phase,
|
|
mut transparent_phase,
|
|
) in &mut views
|
|
{
|
|
let draw_opaque_pbr = opaque_draw_functions.read().id::<DrawMaterial<M>>();
|
|
let draw_alpha_mask_pbr = alpha_mask_draw_functions.read().id::<DrawMaterial<M>>();
|
|
let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial<M>>();
|
|
|
|
let mut view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
|
|
| MeshPipelineKey::from_hdr(view.hdr);
|
|
|
|
let environment_map_loaded = match environment_map {
|
|
Some(environment_map) => environment_map.is_loaded(&images),
|
|
None => false,
|
|
};
|
|
if environment_map_loaded {
|
|
view_key |= MeshPipelineKey::ENVIRONMENT_MAP;
|
|
}
|
|
|
|
if !view.hdr {
|
|
if let Some(tonemapping) = tonemapping {
|
|
view_key |= MeshPipelineKey::TONEMAP_IN_SHADER;
|
|
view_key |= match tonemapping {
|
|
Tonemapping::None => MeshPipelineKey::TONEMAP_METHOD_NONE,
|
|
Tonemapping::Reinhard => MeshPipelineKey::TONEMAP_METHOD_REINHARD,
|
|
Tonemapping::ReinhardLuminance => {
|
|
MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE
|
|
}
|
|
Tonemapping::AcesFitted => MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED,
|
|
Tonemapping::AgX => MeshPipelineKey::TONEMAP_METHOD_AGX,
|
|
Tonemapping::SomewhatBoringDisplayTransform => {
|
|
MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
|
|
}
|
|
Tonemapping::TonyMcMapface => MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
|
|
Tonemapping::BlenderFilmic => MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
|
|
};
|
|
}
|
|
if let Some(DebandDither::Enabled) = dither {
|
|
view_key |= MeshPipelineKey::DEBAND_DITHER;
|
|
}
|
|
}
|
|
|
|
let rangefinder = view.rangefinder3d();
|
|
for visible_entity in &visible_entities.entities {
|
|
if let Ok((material_handle, mesh_handle, mesh_uniform)) =
|
|
material_meshes.get(*visible_entity)
|
|
{
|
|
if let (Some(mesh), Some(material)) = (
|
|
render_meshes.get(mesh_handle),
|
|
render_materials.get(material_handle),
|
|
) {
|
|
let mut mesh_key =
|
|
MeshPipelineKey::from_primitive_topology(mesh.primitive_topology)
|
|
| view_key;
|
|
let alpha_mode = material.properties.alpha_mode;
|
|
if let AlphaMode::Blend | AlphaMode::Premultiplied | AlphaMode::Add = alpha_mode
|
|
{
|
|
// Blend, Premultiplied and Add all share the same pipeline key
|
|
// They're made distinct in the PBR shader, via `premultiply_alpha()`
|
|
mesh_key |= MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA;
|
|
} else if let AlphaMode::Multiply = alpha_mode {
|
|
mesh_key |= MeshPipelineKey::BLEND_MULTIPLY;
|
|
}
|
|
|
|
let pipeline_id = pipelines.specialize(
|
|
&pipeline_cache,
|
|
&material_pipeline,
|
|
MaterialPipelineKey {
|
|
mesh_key,
|
|
bind_group_data: material.key.clone(),
|
|
},
|
|
&mesh.layout,
|
|
);
|
|
let pipeline_id = match pipeline_id {
|
|
Ok(id) => id,
|
|
Err(err) => {
|
|
error!("{}", err);
|
|
continue;
|
|
}
|
|
};
|
|
|
|
let distance = rangefinder.distance(&mesh_uniform.transform)
|
|
+ material.properties.depth_bias;
|
|
match alpha_mode {
|
|
AlphaMode::Opaque => {
|
|
opaque_phase.add(Opaque3d {
|
|
entity: *visible_entity,
|
|
draw_function: draw_opaque_pbr,
|
|
pipeline: pipeline_id,
|
|
distance,
|
|
});
|
|
}
|
|
AlphaMode::Mask(_) => {
|
|
alpha_mask_phase.add(AlphaMask3d {
|
|
entity: *visible_entity,
|
|
draw_function: draw_alpha_mask_pbr,
|
|
pipeline: pipeline_id,
|
|
distance,
|
|
});
|
|
}
|
|
AlphaMode::Blend
|
|
| AlphaMode::Premultiplied
|
|
| AlphaMode::Add
|
|
| AlphaMode::Multiply => {
|
|
transparent_phase.add(Transparent3d {
|
|
entity: *visible_entity,
|
|
draw_function: draw_transparent_pbr,
|
|
pipeline: pipeline_id,
|
|
distance,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Common [`Material`] properties, calculated for a specific material instance.
|
|
pub struct MaterialProperties {
|
|
/// The [`AlphaMode`] of this material.
|
|
pub alpha_mode: AlphaMode,
|
|
/// Add a bias to the view depth of the mesh which can be used to force a specific render order
|
|
/// for meshes with equal depth, to avoid z-fighting.
|
|
pub depth_bias: f32,
|
|
}
|
|
|
|
/// Data prepared for a [`Material`] instance.
|
|
pub struct PreparedMaterial<T: Material> {
|
|
pub bindings: Vec<OwnedBindingResource>,
|
|
pub bind_group: BindGroup,
|
|
pub key: T::Data,
|
|
pub properties: MaterialProperties,
|
|
}
|
|
|
|
#[derive(Resource)]
|
|
pub struct ExtractedMaterials<M: Material> {
|
|
extracted: Vec<(Handle<M>, M)>,
|
|
removed: Vec<Handle<M>>,
|
|
}
|
|
|
|
impl<M: Material> Default for ExtractedMaterials<M> {
|
|
fn default() -> Self {
|
|
Self {
|
|
extracted: Default::default(),
|
|
removed: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Stores all prepared representations of [`Material`] assets for as long as they exist.
|
|
#[derive(Resource, Deref, DerefMut)]
|
|
pub struct RenderMaterials<T: Material>(pub HashMap<Handle<T>, PreparedMaterial<T>>);
|
|
|
|
impl<T: Material> Default for RenderMaterials<T> {
|
|
fn default() -> Self {
|
|
Self(Default::default())
|
|
}
|
|
}
|
|
|
|
/// This system extracts all created or modified assets of the corresponding [`Material`] type
|
|
/// into the "render world".
|
|
pub fn extract_materials<M: Material>(
|
|
mut commands: Commands,
|
|
mut events: Extract<EventReader<AssetEvent<M>>>,
|
|
assets: Extract<Res<Assets<M>>>,
|
|
) {
|
|
let mut changed_assets = HashSet::default();
|
|
let mut removed = Vec::new();
|
|
for event in events.iter() {
|
|
match event {
|
|
AssetEvent::Created { handle } | AssetEvent::Modified { handle } => {
|
|
changed_assets.insert(handle.clone_weak());
|
|
}
|
|
AssetEvent::Removed { handle } => {
|
|
changed_assets.remove(handle);
|
|
removed.push(handle.clone_weak());
|
|
}
|
|
}
|
|
}
|
|
|
|
let mut extracted_assets = Vec::new();
|
|
for handle in changed_assets.drain() {
|
|
if let Some(asset) = assets.get(&handle) {
|
|
extracted_assets.push((handle, asset.clone()));
|
|
}
|
|
}
|
|
|
|
commands.insert_resource(ExtractedMaterials {
|
|
extracted: extracted_assets,
|
|
removed,
|
|
});
|
|
}
|
|
|
|
/// All [`Material`] values of a given type that should be prepared next frame.
|
|
pub struct PrepareNextFrameMaterials<M: Material> {
|
|
assets: Vec<(Handle<M>, M)>,
|
|
}
|
|
|
|
impl<M: Material> Default for PrepareNextFrameMaterials<M> {
|
|
fn default() -> Self {
|
|
Self {
|
|
assets: Default::default(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This system prepares all assets of the corresponding [`Material`] type
|
|
/// which where extracted this frame for the GPU.
|
|
pub fn prepare_materials<M: Material>(
|
|
mut prepare_next_frame: Local<PrepareNextFrameMaterials<M>>,
|
|
mut extracted_assets: ResMut<ExtractedMaterials<M>>,
|
|
mut render_materials: ResMut<RenderMaterials<M>>,
|
|
render_device: Res<RenderDevice>,
|
|
images: Res<RenderAssets<Image>>,
|
|
fallback_image: Res<FallbackImage>,
|
|
pipeline: Res<MaterialPipeline<M>>,
|
|
) {
|
|
let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
|
|
for (handle, material) in queued_assets.into_iter() {
|
|
match prepare_material(
|
|
&material,
|
|
&render_device,
|
|
&images,
|
|
&fallback_image,
|
|
&pipeline,
|
|
) {
|
|
Ok(prepared_asset) => {
|
|
render_materials.insert(handle, prepared_asset);
|
|
}
|
|
Err(AsBindGroupError::RetryNextUpdate) => {
|
|
prepare_next_frame.assets.push((handle, material));
|
|
}
|
|
}
|
|
}
|
|
|
|
for removed in std::mem::take(&mut extracted_assets.removed) {
|
|
render_materials.remove(&removed);
|
|
}
|
|
|
|
for (handle, material) in std::mem::take(&mut extracted_assets.extracted) {
|
|
match prepare_material(
|
|
&material,
|
|
&render_device,
|
|
&images,
|
|
&fallback_image,
|
|
&pipeline,
|
|
) {
|
|
Ok(prepared_asset) => {
|
|
render_materials.insert(handle, prepared_asset);
|
|
}
|
|
Err(AsBindGroupError::RetryNextUpdate) => {
|
|
prepare_next_frame.assets.push((handle, material));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn prepare_material<M: Material>(
|
|
material: &M,
|
|
render_device: &RenderDevice,
|
|
images: &RenderAssets<Image>,
|
|
fallback_image: &FallbackImage,
|
|
pipeline: &MaterialPipeline<M>,
|
|
) -> Result<PreparedMaterial<M>, AsBindGroupError> {
|
|
let prepared = material.as_bind_group(
|
|
&pipeline.material_layout,
|
|
render_device,
|
|
images,
|
|
fallback_image,
|
|
)?;
|
|
Ok(PreparedMaterial {
|
|
bindings: prepared.bindings,
|
|
bind_group: prepared.bind_group,
|
|
key: prepared.data,
|
|
properties: MaterialProperties {
|
|
alpha_mode: material.alpha_mode(),
|
|
depth_bias: material.depth_bias(),
|
|
},
|
|
})
|
|
}
|