bevy/examples/shader/post_processing.rs
ira ea13f0bddf Add helper methods for rotating Transforms (#5151)
# Objective
Users often ask for help with rotations as they struggle with `Quat`s.
`Quat` is rather complex and has a ton of verbose methods.

## Solution
Add rotation helper methods to `Transform`.


Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-07-01 03:58:54 +00:00

257 lines
8.7 KiB
Rust

//! A custom post processing effect, using two cameras, with one reusing the render texture of the first one.
//! Here a chromatic aberration is applied to a 3d scene containting a rotating cube.
//! This example is useful to implement your own post-processing effect such as
//! edge detection, blur, pixelization, vignette... and countless others.
use bevy::{
core_pipeline::clear_color::ClearColorConfig,
ecs::system::{lifetimeless::SRes, SystemParamItem},
prelude::*,
reflect::TypeUuid,
render::{
camera::{Camera, RenderTarget},
render_asset::{PrepareAssetError, RenderAsset, RenderAssets},
render_resource::{
BindGroup, BindGroupDescriptor, BindGroupEntry, BindGroupLayout,
BindGroupLayoutDescriptor, BindGroupLayoutEntry, BindingResource, BindingType,
Extent3d, SamplerBindingType, ShaderStages, TextureDescriptor, TextureDimension,
TextureFormat, TextureSampleType, TextureUsages, TextureViewDimension,
},
renderer::RenderDevice,
view::RenderLayers,
},
sprite::{Material2d, Material2dPipeline, Material2dPlugin, MaterialMesh2dBundle},
};
fn main() {
let mut app = App::new();
app.add_plugins(DefaultPlugins)
.add_plugin(Material2dPlugin::<PostProcessingMaterial>::default())
.add_startup_system(setup)
.add_system(main_camera_cube_rotator_system);
app.run();
}
/// Marks the first camera cube (rendered to a texture.)
#[derive(Component)]
struct MainCube;
fn setup(
mut commands: Commands,
mut windows: ResMut<Windows>,
mut meshes: ResMut<Assets<Mesh>>,
mut post_processing_materials: ResMut<Assets<PostProcessingMaterial>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut images: ResMut<Assets<Image>>,
) {
let window = windows.get_primary_mut().unwrap();
let size = Extent3d {
width: window.physical_width(),
height: window.physical_height(),
..default()
};
// This is the texture that will be rendered to.
let mut image = Image {
texture_descriptor: TextureDescriptor {
label: None,
size,
dimension: TextureDimension::D2,
format: TextureFormat::Bgra8UnormSrgb,
mip_level_count: 1,
sample_count: 1,
usage: TextureUsages::TEXTURE_BINDING
| TextureUsages::COPY_DST
| TextureUsages::RENDER_ATTACHMENT,
},
..default()
};
// fill image.data with zeroes
image.resize(size);
let image_handle = images.add(image);
let cube_handle = meshes.add(Mesh::from(shape::Cube { size: 4.0 }));
let cube_material_handle = materials.add(StandardMaterial {
base_color: Color::rgb(0.8, 0.7, 0.6),
reflectance: 0.02,
unlit: false,
..default()
});
// The cube that will be rendered to the texture.
commands
.spawn_bundle(PbrBundle {
mesh: cube_handle,
material: cube_material_handle,
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 1.0)),
..default()
})
.insert(MainCube);
// Light
// NOTE: Currently lights are ignoring render layers - see https://github.com/bevyengine/bevy/issues/3462
commands.spawn_bundle(PointLightBundle {
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 10.0)),
..default()
});
// Main camera, first to render
commands.spawn_bundle(Camera3dBundle {
camera_3d: Camera3d {
clear_color: ClearColorConfig::Custom(Color::WHITE),
..default()
},
camera: Camera {
target: RenderTarget::Image(image_handle.clone()),
..default()
},
transform: Transform::from_translation(Vec3::new(0.0, 0.0, 15.0))
.looking_at(Vec3::default(), Vec3::Y),
..default()
});
// This specifies the layer used for the post processing camera, which will be attached to the post processing camera and 2d quad.
let post_processing_pass_layer = RenderLayers::layer((RenderLayers::TOTAL_LAYERS - 1) as u8);
let quad_handle = meshes.add(Mesh::from(shape::Quad::new(Vec2::new(
size.width as f32,
size.height as f32,
))));
// This material has the texture that has been rendered.
let material_handle = post_processing_materials.add(PostProcessingMaterial {
source_image: image_handle,
});
// Post processing 2d quad, with material using the render texture done by the main camera, with a custom shader.
commands
.spawn_bundle(MaterialMesh2dBundle {
mesh: quad_handle.into(),
material: material_handle,
transform: Transform {
translation: Vec3::new(0.0, 0.0, 1.5),
..default()
},
..default()
})
.insert(post_processing_pass_layer);
// The post-processing pass camera.
commands
.spawn_bundle(Camera2dBundle {
camera: Camera {
// renders after the first main camera which has default value: 0.
priority: 1,
..default()
},
..Camera2dBundle::default()
})
.insert(post_processing_pass_layer);
}
/// Rotates the cube rendered by the main camera
fn main_camera_cube_rotator_system(
time: Res<Time>,
mut query: Query<&mut Transform, With<MainCube>>,
) {
for mut transform in query.iter_mut() {
transform.rotate_x(0.55 * time.delta_seconds());
transform.rotate_z(0.15 * time.delta_seconds());
}
}
// Region below declares of the custom material handling post processing effect
/// Our custom post processing material
#[derive(TypeUuid, Clone)]
#[uuid = "bc2f08eb-a0fb-43f1-a908-54871ea597d5"]
struct PostProcessingMaterial {
/// In this example, this image will be the result of the main camera.
source_image: Handle<Image>,
}
struct PostProcessingMaterialGPU {
bind_group: BindGroup,
}
impl Material2d for PostProcessingMaterial {
fn bind_group(material: &PostProcessingMaterialGPU) -> &BindGroup {
&material.bind_group
}
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: None,
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
multisampled: false,
view_dimension: TextureViewDimension::D2,
sample_type: TextureSampleType::Float { filterable: true },
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
],
})
}
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
asset_server.watch_for_changes().unwrap();
Some(asset_server.load("shaders/custom_material_chromatic_aberration.wgsl"))
}
}
impl RenderAsset for PostProcessingMaterial {
type ExtractedAsset = PostProcessingMaterial;
type PreparedAsset = PostProcessingMaterialGPU;
type Param = (
SRes<RenderDevice>,
SRes<Material2dPipeline<PostProcessingMaterial>>,
SRes<RenderAssets<Image>>,
);
fn prepare_asset(
extracted_asset: PostProcessingMaterial,
(render_device, pipeline, images): &mut SystemParamItem<Self::Param>,
) -> Result<PostProcessingMaterialGPU, PrepareAssetError<PostProcessingMaterial>> {
let (view, sampler) = if let Some(result) = pipeline
.mesh2d_pipeline
.get_image_texture(images, &Some(extracted_asset.source_image.clone()))
{
result
} else {
return Err(PrepareAssetError::RetryNextUpdate(extracted_asset));
};
let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
label: None,
layout: &pipeline.material2d_layout,
entries: &[
BindGroupEntry {
binding: 0,
resource: BindingResource::TextureView(view),
},
BindGroupEntry {
binding: 1,
resource: BindingResource::Sampler(sampler),
},
],
});
Ok(PostProcessingMaterialGPU { bind_group })
}
fn extract_asset(&self) -> PostProcessingMaterial {
self.clone()
}
}