bevy/crates/bevy_ecs/src/system/mod.rs
Alice Cecile c0a93aa7a4 Rename system chaining to system piping (#6230)
# Objective

> System chaining is a confusing name: it implies the ability to construct non-linear graphs, and suggests a sense of system ordering that is only incidentally true. Instead, it actually works by passing data from one system to the next, much like the pipe operator.

> In the accepted [stageless RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/45-stageless.md), this concept is renamed to piping, and "system chaining" is used to construct groups of systems with ordering dependencies between them.

Fixes #6225.

## Changelog

System chaining has been renamed to system piping to improve clarity (and free up the name for new ordering APIs). 

## Migration Guide

The `.chain(handler_system)` method on systems is now `.pipe(handler_system)`.
The `IntoChainSystem` trait is now `IntoPipeSystem`, and the `ChainSystem` struct is now `PipeSystem`.
2022-10-11 15:21:12 +00:00

1166 lines
35 KiB
Rust

//! Tools for controlling behavior in an ECS application.
//!
//! Systems define how an ECS based application behaves. They have to be registered to a
//! [`SystemStage`](crate::schedule::SystemStage) to be able to run. A system is usually
//! written as a normal function that will be automatically converted into a system.
//!
//! System functions can have parameters, through which one can query and mutate Bevy ECS state.
//! Only types that implement [`SystemParam`] can be used, automatically fetching data from
//! the [`World`](crate::world::World).
//!
//! System functions often look like this:
//!
//! ```
//! # use bevy_ecs::prelude::*;
//! #
//! # #[derive(Component)]
//! # struct Player { alive: bool }
//! # #[derive(Component)]
//! # struct Score(u32);
//! # #[derive(Resource)]
//! # struct Round(u32);
//! #
//! fn update_score_system(
//! mut query: Query<(&Player, &mut Score)>,
//! mut round: ResMut<Round>,
//! ) {
//! for (player, mut score) in &mut query {
//! if player.alive {
//! score.0 += round.0;
//! }
//! }
//! round.0 += 1;
//! }
//! # bevy_ecs::system::assert_is_system(update_score_system);
//! ```
//!
//! # System ordering
//!
//! While the execution of systems is usually parallel and not deterministic, there are two
//! ways to determine a certain degree of execution order:
//!
//! - **System Stages:** They determine hard execution synchronization boundaries inside of
//! which systems run in parallel by default.
//! - **Labeling:** First, systems are labeled upon creation by calling `.label()`. Then,
//! methods such as `.before()` and `.after()` are appended to systems to determine
//! execution order in respect to other systems.
//!
//! # System parameter list
//! Following is the complete list of accepted types as system parameters:
//!
//! - [`Query`]
//! - [`Res`] and `Option<Res>`
//! - [`ResMut`] and `Option<ResMut>`
//! - [`Commands`]
//! - [`Local`]
//! - [`EventReader`](crate::event::EventReader)
//! - [`EventWriter`](crate::event::EventWriter)
//! - [`NonSend`] and `Option<NonSend>`
//! - [`NonSendMut`] and `Option<NonSendMut>`
//! - [`&World`](crate::world::World)
//! - [`RemovedComponents`]
//! - [`SystemName`]
//! - [`SystemChangeTick`]
//! - [`Archetypes`](crate::archetype::Archetypes) (Provides Archetype metadata)
//! - [`Bundles`](crate::bundle::Bundles) (Provides Bundles metadata)
//! - [`Components`](crate::component::Components) (Provides Components metadata)
//! - [`Entities`](crate::entity::Entities) (Provides Entities metadata)
//! - All tuples between 1 to 16 elements where each element implements [`SystemParam`]
//! - [`()` (unit primitive type)](https://doc.rust-lang.org/stable/std/primitive.unit.html)
mod commands;
mod exclusive_function_system;
mod exclusive_system_param;
mod function_system;
mod query;
#[allow(clippy::module_inception)]
mod system;
mod system_param;
mod system_piping;
pub use commands::*;
pub use exclusive_function_system::*;
pub use exclusive_system_param::*;
pub use function_system::*;
pub use query::*;
pub use system::*;
pub use system_param::*;
pub use system_piping::*;
/// Ensure that a given function is a system
///
/// This should be used when writing doc examples,
/// to confirm that systems used in an example are
/// valid systems
pub fn assert_is_system<In, Out, Params, S: IntoSystem<In, Out, Params>>(sys: S) {
if false {
// Check it can be converted into a system
// TODO: This should ensure that the system has no conflicting system params
IntoSystem::into_system(sys);
}
}
#[cfg(test)]
mod tests {
use std::any::TypeId;
use crate::prelude::StageLabel;
use crate::{
self as bevy_ecs,
archetype::{ArchetypeComponentId, Archetypes},
bundle::Bundles,
component::{Component, Components},
entity::{Entities, Entity},
prelude::AnyOf,
query::{Added, Changed, Or, With, Without},
schedule::{Schedule, Stage, SystemStage},
system::{
Commands, IntoSystem, Local, NonSend, NonSendMut, ParamSet, Query, RemovedComponents,
Res, ResMut, Resource, System, SystemState,
},
world::{FromWorld, World},
};
#[derive(Resource, PartialEq, Debug)]
enum SystemRan {
Yes,
No,
}
#[derive(Component, Resource, Debug, Eq, PartialEq, Default)]
struct A;
#[derive(Component, Resource)]
struct B;
#[derive(Component, Resource)]
struct C;
#[derive(Component, Resource)]
struct D;
#[derive(Component, Resource)]
struct E;
#[derive(Component, Resource)]
struct F;
#[derive(Component)]
struct W<T>(T);
#[derive(StageLabel)]
struct UpdateStage;
#[test]
fn simple_system() {
fn sys(query: Query<&A>) {
for a in &query {
println!("{:?}", a);
}
}
let mut system = IntoSystem::into_system(sys);
let mut world = World::new();
world.spawn(A);
system.initialize(&mut world);
system.run((), &mut world);
}
fn run_system<Param, S: IntoSystem<(), (), Param>>(world: &mut World, system: S) {
let mut schedule = Schedule::default();
let mut update = SystemStage::parallel();
update.add_system(system);
schedule.add_stage(UpdateStage, update);
schedule.run(world);
}
#[test]
fn query_system_gets() {
fn query_system(
mut ran: ResMut<SystemRan>,
entity_query: Query<Entity, With<A>>,
b_query: Query<&B>,
a_c_query: Query<(&A, &C)>,
d_query: Query<&D>,
) {
let entities = entity_query.iter().collect::<Vec<Entity>>();
assert!(
b_query.get_component::<B>(entities[0]).is_err(),
"entity 0 should not have B"
);
assert!(
b_query.get_component::<B>(entities[1]).is_ok(),
"entity 1 should have B"
);
assert!(
b_query.get_component::<A>(entities[1]).is_err(),
"entity 1 should have A, but b_query shouldn't have access to it"
);
assert!(
b_query.get_component::<D>(entities[3]).is_err(),
"entity 3 should have D, but it shouldn't be accessible from b_query"
);
assert!(
b_query.get_component::<C>(entities[2]).is_err(),
"entity 2 has C, but it shouldn't be accessible from b_query"
);
assert!(
a_c_query.get_component::<C>(entities[2]).is_ok(),
"entity 2 has C, and it should be accessible from a_c_query"
);
assert!(
a_c_query.get_component::<D>(entities[3]).is_err(),
"entity 3 should have D, but it shouldn't be accessible from b_query"
);
assert!(
d_query.get_component::<D>(entities[3]).is_ok(),
"entity 3 should have D"
);
*ran = SystemRan::Yes;
}
let mut world = World::default();
world.insert_resource(SystemRan::No);
world.spawn(A);
world.spawn((A, B));
world.spawn((A, C));
world.spawn((A, D));
run_system(&mut world, query_system);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn or_param_set_system() {
// Regression test for issue #762
fn query_system(
mut ran: ResMut<SystemRan>,
mut set: ParamSet<(
Query<(), Or<(Changed<A>, Changed<B>)>>,
Query<(), Or<(Added<A>, Added<B>)>>,
)>,
) {
let changed = set.p0().iter().count();
let added = set.p1().iter().count();
assert_eq!(changed, 1);
assert_eq!(added, 1);
*ran = SystemRan::Yes;
}
let mut world = World::default();
world.insert_resource(SystemRan::No);
world.spawn((A, B));
run_system(&mut world, query_system);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn changed_resource_system() {
use crate::system::Resource;
#[derive(Resource)]
struct Flipper(bool);
#[derive(Resource)]
struct Added(usize);
#[derive(Resource)]
struct Changed(usize);
fn incr_e_on_flip(
value: Res<Flipper>,
mut changed: ResMut<Changed>,
mut added: ResMut<Added>,
) {
if value.is_added() {
added.0 += 1;
}
if value.is_changed() {
changed.0 += 1;
}
}
let mut world = World::default();
world.insert_resource(Flipper(false));
world.insert_resource(Added(0));
world.insert_resource(Changed(0));
#[derive(StageLabel)]
struct ClearTrackers;
let mut schedule = Schedule::default();
let mut update = SystemStage::parallel();
update.add_system(incr_e_on_flip);
schedule.add_stage(UpdateStage, update);
schedule.add_stage(ClearTrackers, SystemStage::single(World::clear_trackers));
schedule.run(&mut world);
assert_eq!(world.resource::<Added>().0, 1);
assert_eq!(world.resource::<Changed>().0, 1);
schedule.run(&mut world);
assert_eq!(world.resource::<Added>().0, 1);
assert_eq!(world.resource::<Changed>().0, 1);
world.resource_mut::<Flipper>().0 = true;
schedule.run(&mut world);
assert_eq!(world.resource::<Added>().0, 1);
assert_eq!(world.resource::<Changed>().0, 2);
}
#[test]
#[should_panic = "error[B0001]"]
fn option_has_no_filter_with() {
fn sys(_: Query<(Option<&A>, &mut B)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn option_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<(Option<&A>, &mut B, &A)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn any_of_has_no_filter_with() {
fn sys(_: Query<(AnyOf<(&A, ())>, &mut B)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn any_of_has_filter_with_when_both_have_it() {
fn sys(_: Query<(AnyOf<(&A, &A)>, &mut B)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn any_of_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<(AnyOf<(&A, ())>, &mut B, &A)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic = "error[B0001]"]
fn or_has_no_filter_with() {
fn sys(_: Query<&mut B, Or<(With<A>, With<B>)>>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_has_filter_with_when_both_have_it() {
fn sys(_: Query<&mut B, Or<(With<A>, With<A>)>>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn or_doesnt_remove_unrelated_filter_with() {
fn sys(_: Query<&mut B, (Or<(With<A>, With<B>)>, With<A>)>, _: Query<&mut B, Without<A>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_mut_system() {
fn sys(_q1: Query<&mut A>, _q2: Query<&mut A>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn disjoint_query_mut_system() {
fn sys(_q1: Query<&mut A, With<B>>, _q2: Query<&mut A, Without<B>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn disjoint_query_mut_read_component_system() {
fn sys(_q1: Query<(&mut A, &B)>, _q2: Query<&mut A, Without<B>>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_immut_system() {
fn sys(_q1: Query<&A>, _q2: Query<&mut A>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
fn query_set_system() {
fn sys(mut _set: ParamSet<(Query<&mut A>, Query<&A>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_with_query_set_system() {
fn sys(_query: Query<&mut A>, _set: ParamSet<(Query<&mut A>, Query<&B>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_query_sets_system() {
fn sys(_set_1: ParamSet<(Query<&mut A>,)>, _set_2: ParamSet<(Query<&mut A>, Query<&B>)>) {}
let mut world = World::default();
run_system(&mut world, sys);
}
#[derive(Default, Resource)]
struct BufferRes {
_buffer: Vec<u8>,
}
fn test_for_conflicting_resources<Param, S: IntoSystem<(), (), Param>>(sys: S) {
let mut world = World::default();
world.insert_resource(BufferRes::default());
world.insert_resource(A);
world.insert_resource(B);
run_system(&mut world, sys);
}
#[test]
#[should_panic]
fn conflicting_system_resources() {
fn sys(_: ResMut<BufferRes>, _: Res<BufferRes>) {}
test_for_conflicting_resources(sys);
}
#[test]
#[should_panic]
fn conflicting_system_resources_reverse_order() {
fn sys(_: Res<BufferRes>, _: ResMut<BufferRes>) {}
test_for_conflicting_resources(sys);
}
#[test]
#[should_panic]
fn conflicting_system_resources_multiple_mutable() {
fn sys(_: ResMut<BufferRes>, _: ResMut<BufferRes>) {}
test_for_conflicting_resources(sys);
}
#[test]
fn nonconflicting_system_resources() {
fn sys(_: Local<BufferRes>, _: ResMut<BufferRes>, _: Local<A>, _: ResMut<A>) {}
test_for_conflicting_resources(sys);
}
#[test]
fn local_system() {
let mut world = World::default();
world.insert_resource(ProtoFoo { value: 1 });
world.insert_resource(SystemRan::No);
struct Foo {
value: u32,
}
#[derive(Resource)]
struct ProtoFoo {
value: u32,
}
impl FromWorld for Foo {
fn from_world(world: &mut World) -> Self {
Foo {
value: world.resource::<ProtoFoo>().value + 1,
}
}
}
fn sys(local: Local<Foo>, mut system_ran: ResMut<SystemRan>) {
assert_eq!(local.value, 2);
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
// ensure the system actually ran
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn non_send_option_system() {
let mut world = World::default();
world.insert_resource(SystemRan::No);
struct NotSend1(std::rc::Rc<i32>);
struct NotSend2(std::rc::Rc<i32>);
world.insert_non_send_resource(NotSend1(std::rc::Rc::new(0)));
fn sys(
op: Option<NonSend<NotSend1>>,
mut _op2: Option<NonSendMut<NotSend2>>,
mut system_ran: ResMut<SystemRan>,
) {
op.expect("NonSend should exist");
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
// ensure the system actually ran
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn non_send_system() {
let mut world = World::default();
world.insert_resource(SystemRan::No);
struct NotSend1(std::rc::Rc<i32>);
struct NotSend2(std::rc::Rc<i32>);
world.insert_non_send_resource(NotSend1(std::rc::Rc::new(1)));
world.insert_non_send_resource(NotSend2(std::rc::Rc::new(2)));
fn sys(
_op: NonSend<NotSend1>,
mut _op2: NonSendMut<NotSend2>,
mut system_ran: ResMut<SystemRan>,
) {
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn removal_tracking() {
let mut world = World::new();
let entity_to_despawn = world.spawn(W(1)).id();
let entity_to_remove_w_from = world.spawn(W(2)).id();
let spurious_entity = world.spawn_empty().id();
// Track which entities we want to operate on
#[derive(Resource)]
struct Despawned(Entity);
world.insert_resource(Despawned(entity_to_despawn));
#[derive(Resource)]
struct Removed(Entity);
world.insert_resource(Removed(entity_to_remove_w_from));
// Verify that all the systems actually ran
#[derive(Default, Resource)]
struct NSystems(usize);
world.insert_resource(NSystems::default());
// First, check that removal detection is triggered if and only if we despawn an entity with the correct component
world.entity_mut(entity_to_despawn).despawn();
world.entity_mut(spurious_entity).despawn();
fn validate_despawn(
removed_i32: RemovedComponents<W<i32>>,
despawned: Res<Despawned>,
mut n_systems: ResMut<NSystems>,
) {
assert_eq!(
removed_i32.iter().collect::<Vec<_>>(),
&[despawned.0],
"despawning causes the correct entity to show up in the 'RemovedComponent' system parameter."
);
n_systems.0 += 1;
}
run_system(&mut world, validate_despawn);
// Reset the trackers to clear the buffer of removed components
// Ordinarily, this is done in a system added by MinimalPlugins
world.clear_trackers();
// Then, try removing a component
world.spawn(W(3));
world.spawn(W(4));
world.entity_mut(entity_to_remove_w_from).remove::<W<i32>>();
fn validate_remove(
removed_i32: RemovedComponents<W<i32>>,
removed: Res<Removed>,
mut n_systems: ResMut<NSystems>,
) {
assert_eq!(
removed_i32.iter().collect::<Vec<_>>(),
&[removed.0],
"removing a component causes the correct entity to show up in the 'RemovedComponent' system parameter."
);
n_systems.0 += 1;
}
run_system(&mut world, validate_remove);
// Verify that both systems actually ran
assert_eq!(world.resource::<NSystems>().0, 2);
}
#[test]
fn world_collections_system() {
let mut world = World::default();
world.insert_resource(SystemRan::No);
world.spawn((W(42), W(true)));
fn sys(
archetypes: &Archetypes,
components: &Components,
entities: &Entities,
bundles: &Bundles,
query: Query<Entity, With<W<i32>>>,
mut system_ran: ResMut<SystemRan>,
) {
assert_eq!(query.iter().count(), 1, "entity exists");
for entity in &query {
let location = entities.get(entity).unwrap();
let archetype = archetypes.get(location.archetype_id).unwrap();
let archetype_components = archetype.components().collect::<Vec<_>>();
let bundle_id = bundles
.get_id(std::any::TypeId::of::<(W<i32>, W<bool>)>())
.expect("Bundle used to spawn entity should exist");
let bundle_info = bundles.get(bundle_id).unwrap();
let mut bundle_components = bundle_info.components().to_vec();
bundle_components.sort();
for component_id in &bundle_components {
assert!(
components.get_info(*component_id).is_some(),
"every bundle component exists in Components"
);
}
assert_eq!(
bundle_components, archetype_components,
"entity's bundle components exactly match entity's archetype components"
);
}
*system_ran = SystemRan::Yes;
}
run_system(&mut world, sys);
// ensure the system actually ran
assert_eq!(*world.resource::<SystemRan>(), SystemRan::Yes);
}
#[test]
fn get_system_conflicts() {
fn sys_x(_: Res<A>, _: Res<B>, _: Query<(&C, &D)>) {}
fn sys_y(_: Res<A>, _: ResMut<B>, _: Query<(&C, &mut D)>) {}
let mut world = World::default();
let mut x = IntoSystem::into_system(sys_x);
let mut y = IntoSystem::into_system(sys_y);
x.initialize(&mut world);
y.initialize(&mut world);
let conflicts = x.component_access().get_conflicts(y.component_access());
let b_id = world
.components()
.get_resource_id(TypeId::of::<B>())
.unwrap();
let d_id = world.components().get_id(TypeId::of::<D>()).unwrap();
assert_eq!(conflicts, vec![b_id, d_id]);
}
#[test]
fn query_is_empty() {
fn without_filter(not_empty: Query<&A>, empty: Query<&B>) {
assert!(!not_empty.is_empty());
assert!(empty.is_empty());
}
fn with_filter(not_empty: Query<&A, With<C>>, empty: Query<&A, With<D>>) {
assert!(!not_empty.is_empty());
assert!(empty.is_empty());
}
let mut world = World::default();
world.spawn(A).insert(C);
let mut without_filter = IntoSystem::into_system(without_filter);
without_filter.initialize(&mut world);
without_filter.run((), &mut world);
let mut with_filter = IntoSystem::into_system(with_filter);
with_filter.initialize(&mut world);
with_filter.run((), &mut world);
}
#[test]
#[allow(clippy::too_many_arguments)]
fn can_have_16_parameters() {
fn sys_x(
_: Res<A>,
_: Res<B>,
_: Res<C>,
_: Res<D>,
_: Res<E>,
_: Res<F>,
_: Query<&A>,
_: Query<&B>,
_: Query<&C>,
_: Query<&D>,
_: Query<&E>,
_: Query<&F>,
_: Query<(&A, &B)>,
_: Query<(&C, &D)>,
_: Query<(&E, &F)>,
) {
}
fn sys_y(
_: (
Res<A>,
Res<B>,
Res<C>,
Res<D>,
Res<E>,
Res<F>,
Query<&A>,
Query<&B>,
Query<&C>,
Query<&D>,
Query<&E>,
Query<&F>,
Query<(&A, &B)>,
Query<(&C, &D)>,
Query<(&E, &F)>,
),
) {
}
let mut world = World::default();
let mut x = IntoSystem::into_system(sys_x);
let mut y = IntoSystem::into_system(sys_y);
x.initialize(&mut world);
y.initialize(&mut world);
}
#[test]
fn read_system_state() {
#[derive(Eq, PartialEq, Debug, Resource)]
struct A(usize);
#[derive(Component, Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.insert_resource(A(42));
world.spawn(B(7));
let mut system_state: SystemState<(Res<A>, Query<&B>, ParamSet<(Query<&C>, Query<&D>)>)> =
SystemState::new(&mut world);
let (a, query, _) = system_state.get(&world);
assert_eq!(*a, A(42), "returned resource matches initial value");
assert_eq!(
*query.single(),
B(7),
"returned component matches initial value"
);
}
#[test]
fn write_system_state() {
#[derive(Resource, Eq, PartialEq, Debug)]
struct A(usize);
#[derive(Component, Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.insert_resource(A(42));
world.spawn(B(7));
let mut system_state: SystemState<(ResMut<A>, Query<&mut B>)> =
SystemState::new(&mut world);
// The following line shouldn't compile because the parameters used are not ReadOnlySystemParam
// let (a, query) = system_state.get(&world);
let (a, mut query) = system_state.get_mut(&mut world);
assert_eq!(*a, A(42), "returned resource matches initial value");
assert_eq!(
*query.single_mut(),
B(7),
"returned component matches initial value"
);
}
#[test]
fn system_state_change_detection() {
#[derive(Component, Eq, PartialEq, Debug)]
struct A(usize);
let mut world = World::default();
let entity = world.spawn(A(1)).id();
let mut system_state: SystemState<Query<&A, Changed<A>>> = SystemState::new(&mut world);
{
let query = system_state.get(&world);
assert_eq!(*query.single(), A(1));
}
{
let query = system_state.get(&world);
assert!(query.get_single().is_err());
}
world.entity_mut(entity).get_mut::<A>().unwrap().0 = 2;
{
let query = system_state.get(&world);
assert_eq!(*query.single(), A(2));
}
}
#[test]
#[should_panic]
fn system_state_invalid_world() {
let mut world = World::default();
let mut system_state = SystemState::<Query<&A>>::new(&mut world);
let mismatched_world = World::default();
system_state.get(&mismatched_world);
}
#[test]
fn system_state_archetype_update() {
#[derive(Component, Eq, PartialEq, Debug)]
struct A(usize);
#[derive(Component, Eq, PartialEq, Debug)]
struct B(usize);
let mut world = World::default();
world.spawn(A(1));
let mut system_state = SystemState::<Query<&A>>::new(&mut world);
{
let query = system_state.get(&world);
assert_eq!(
query.iter().collect::<Vec<_>>(),
vec![&A(1)],
"exactly one component returned"
);
}
world.spawn((A(2), B(2)));
{
let query = system_state.get(&world);
assert_eq!(
query.iter().collect::<Vec<_>>(),
vec![&A(1), &A(2)],
"components from both archetypes returned"
);
}
}
/// this test exists to show that read-only world-only queries can return data that lives as long as 'world
#[test]
#[allow(unused)]
fn long_life_test() {
struct Holder<'w> {
value: &'w A,
}
struct State {
state: SystemState<Res<'static, A>>,
state_q: SystemState<Query<'static, 'static, &'static A>>,
}
impl State {
fn hold_res<'w>(&mut self, world: &'w World) -> Holder<'w> {
let a = self.state.get(world);
Holder {
value: a.into_inner(),
}
}
fn hold_component<'w>(&mut self, world: &'w World, entity: Entity) -> Holder<'w> {
let q = self.state_q.get(world);
let a = q.get_inner(entity).unwrap();
Holder { value: a }
}
fn hold_components<'w>(&mut self, world: &'w World) -> Vec<Holder<'w>> {
let mut components = Vec::new();
let q = self.state_q.get(world);
for a in q.iter_inner() {
components.push(Holder { value: a });
}
components
}
}
}
#[test]
fn immutable_mut_test() {
#[derive(Component, Eq, PartialEq, Debug, Clone, Copy)]
struct A(usize);
let mut world = World::default();
world.spawn(A(1));
world.spawn(A(2));
let mut system_state = SystemState::<Query<&mut A>>::new(&mut world);
{
let mut query = system_state.get_mut(&mut world);
assert_eq!(
query.iter_mut().map(|m| *m).collect::<Vec<A>>(),
vec![A(1), A(2)],
"both components returned by iter_mut of &mut"
);
assert_eq!(
query.iter().collect::<Vec<&A>>(),
vec![&A(1), &A(2)],
"both components returned by iter of &mut"
);
}
}
#[test]
fn convert_mut_to_immut() {
{
let mut world = World::new();
fn mutable_query(mut query: Query<&mut A>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<&A>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<Option<&mut A>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<Option<&A>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &B)>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B)>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B)>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B)>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), With<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), With<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), Without<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), Without<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), Added<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), Added<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
{
let mut world = World::new();
fn mutable_query(mut query: Query<(&mut A, &mut B), Changed<C>>) {
for _ in &mut query {}
immutable_query(query.to_readonly());
}
fn immutable_query(_: Query<(&A, &B), Changed<C>>) {}
let mut sys = IntoSystem::into_system(mutable_query);
sys.initialize(&mut world);
}
}
#[test]
fn update_archetype_component_access_works() {
use std::collections::HashSet;
fn a_not_b_system(_query: Query<&A, Without<B>>) {}
let mut world = World::default();
let mut system = IntoSystem::into_system(a_not_b_system);
let mut expected_ids = HashSet::<ArchetypeComponentId>::new();
let a_id = world.init_component::<A>();
// set up system and verify its access is empty
system.initialize(&mut world);
system.update_archetype_component_access(&world);
assert_eq!(
system
.archetype_component_access()
.reads()
.collect::<HashSet<_>>(),
expected_ids
);
// add some entities with archetypes that should match and save their ids
expected_ids.insert(
world
.spawn(A)
.archetype()
.get_archetype_component_id(a_id)
.unwrap(),
);
expected_ids.insert(
world
.spawn((A, C))
.archetype()
.get_archetype_component_id(a_id)
.unwrap(),
);
// add some entities with archetypes that should not match
world.spawn((A, B));
world.spawn((B, C));
// update system and verify its accesses are correct
system.update_archetype_component_access(&world);
assert_eq!(
system
.archetype_component_access()
.reads()
.collect::<HashSet<_>>(),
expected_ids
);
// one more round
expected_ids.insert(
world
.spawn((A, D))
.archetype()
.get_archetype_component_id(a_id)
.unwrap(),
);
world.spawn((A, B, D));
system.update_archetype_component_access(&world);
assert_eq!(
system
.archetype_component_access()
.reads()
.collect::<HashSet<_>>(),
expected_ids
);
}
#[test]
fn commands_param_set() {
// Regression test for #4676
let mut world = World::new();
let entity = world.spawn_empty().id();
run_system(
&mut world,
move |mut commands_set: ParamSet<(Commands, Commands)>| {
commands_set.p0().entity(entity).insert(A);
commands_set.p1().entity(entity).insert(B);
},
);
let entity = world.entity(entity);
assert!(entity.contains::<A>());
assert!(entity.contains::<B>());
}
#[test]
fn into_iter_impl() {
let mut world = World::new();
world.spawn(W(42u32));
run_system(&mut world, |mut q: Query<&mut W<u32>>| {
for mut a in &mut q {
assert_eq!(a.0, 42);
a.0 = 0;
}
for a in &q {
assert_eq!(a.0, 0);
}
});
}
}