bevy/crates/bevy_window/src/window.rs
eiei114 619c30c036 Fix comment typo (#5421)
# Objective

- Fix some typos

## Solution

For the first time in my life, I made a pull request to OSS.
Am I right?


Co-authored-by: eiei114 <60887155+eiei114@users.noreply.github.com>
2022-07-22 15:04:32 +00:00

867 lines
31 KiB
Rust

use bevy_math::{DVec2, IVec2, UVec2, Vec2};
use bevy_utils::{tracing::warn, Uuid};
use raw_window_handle::RawWindowHandle;
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
/// A unique ID for a [`Window`].
pub struct WindowId(Uuid);
/// Presentation mode for a window.
///
/// The presentation mode specifies when a frame is presented to the window. The `Fifo`
/// option corresponds to a traditional `VSync`, where the framerate is capped by the
/// display refresh rate. Both `Immediate` and `Mailbox` are low-latency and are not
/// capped by the refresh rate, but may not be available on all platforms. Tearing
/// may be observed with `Immediate` mode, but will not be observed with `Mailbox` or
/// `Fifo`.
///
/// `Immediate` or `Mailbox` will gracefully fallback to `Fifo` when unavailable.
///
/// The presentation mode may be declared in the [`WindowDescriptor`](WindowDescriptor::present_mode)
/// or updated on a [`Window`](Window::set_present_mode).
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[doc(alias = "vsync")]
pub enum PresentMode {
/// Chooses FifoRelaxed -> Fifo based on availability.
///
/// Because of the fallback behavior, it is supported everywhere.
AutoVsync = 0,
/// Chooses Immediate -> Mailbox -> Fifo (on web) based on availability.
///
/// Because of the fallback behavior, it is supported everywhere.
AutoNoVsync = 1,
/// The presentation engine does **not** wait for a vertical blanking period and
/// the request is presented immediately. This is a low-latency presentation mode,
/// but visible tearing may be observed. Will fallback to `Fifo` if unavailable on the
/// selected platform and backend. Not optimal for mobile.
///
/// Selecting this variant will panic if not supported, it is preferred to use
/// [`PresentMode::AutoNoVsync`].
Immediate = 2,
/// The presentation engine waits for the next vertical blanking period to update
/// the current image, but frames may be submitted without delay. This is a low-latency
/// presentation mode and visible tearing will **not** be observed. Will fallback to `Fifo`
/// if unavailable on the selected platform and backend. Not optimal for mobile.
///
/// Selecting this variant will panic if not supported, it is preferred to use
/// [`PresentMode::AutoNoVsync`].
Mailbox = 3,
/// The presentation engine waits for the next vertical blanking period to update
/// the current image. The framerate will be capped at the display refresh rate,
/// corresponding to the `VSync`. Tearing cannot be observed. Optimal for mobile.
Fifo = 4, // NOTE: The explicit ordinal values mirror wgpu.
}
impl WindowId {
/// Creates a new [`WindowId`].
pub fn new() -> Self {
WindowId(Uuid::new_v4())
}
/// The [`WindowId`] for the primary window.
pub fn primary() -> Self {
WindowId(Uuid::from_u128(0))
}
/// Get whether or not this [`WindowId`] is for the primary window.
pub fn is_primary(&self) -> bool {
*self == WindowId::primary()
}
}
use crate::CursorIcon;
use std::fmt;
use crate::raw_window_handle::RawWindowHandleWrapper;
impl fmt::Display for WindowId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.as_simple().fmt(f)
}
}
impl Default for WindowId {
fn default() -> Self {
WindowId::primary()
}
}
/// The size limits on a window.
///
/// These values are measured in logical pixels, so the user's
/// scale factor does affect the size limits on the window.
/// Please note that if the window is resizable, then when the window is
/// maximized it may have a size outside of these limits. The functionality
/// required to disable maximizing is not yet exposed by winit.
#[derive(Debug, Clone, Copy)]
pub struct WindowResizeConstraints {
pub min_width: f32,
pub min_height: f32,
pub max_width: f32,
pub max_height: f32,
}
impl Default for WindowResizeConstraints {
fn default() -> Self {
Self {
min_width: 180.,
min_height: 120.,
max_width: f32::INFINITY,
max_height: f32::INFINITY,
}
}
}
impl WindowResizeConstraints {
#[must_use]
pub fn check_constraints(&self) -> Self {
let WindowResizeConstraints {
mut min_width,
mut min_height,
mut max_width,
mut max_height,
} = self;
min_width = min_width.max(1.);
min_height = min_height.max(1.);
if max_width < min_width {
warn!(
"The given maximum width {} is smaller than the minimum width {}",
max_width, min_width
);
max_width = min_width;
}
if max_height < min_height {
warn!(
"The given maximum height {} is smaller than the minimum height {}",
max_height, min_height
);
max_height = min_height;
}
WindowResizeConstraints {
min_width,
min_height,
max_width,
max_height,
}
}
}
/// An operating system window that can present content and receive user input.
///
/// To create a window, use a [`EventWriter<CreateWindow>`](`crate::CreateWindow`).
///
/// ## Window Sizes
///
/// There are three sizes associated with a window. The physical size which is
/// the height and width in physical pixels on the monitor. The logical size
/// which is the physical size scaled by an operating system provided factor to
/// account for monitors with differing pixel densities or user preference. And
/// the requested size, measured in logical pixels, which is the value submitted
/// to the API when creating the window, or requesting that it be resized.
///
/// The actual size, in logical pixels, of the window may not match the
/// requested size due to operating system limits on the window size, or the
/// quantization of the logical size when converting the physical size to the
/// logical size through the scaling factor.
///
/// ## Accessing a `Window` from a system
///
/// To access a `Window` from a system, use [`bevy_ecs::change_detection::ResMut`]`<`[`crate::Windows`]`>`.
///
/// ### Example
/// ```no_run
/// # use bevy_app::App;
/// # use bevy_window::Windows;
/// # use bevy_ecs::change_detection::ResMut;
/// # fn main(){
/// # App::new().add_system(access_window_system).run();
/// # }
/// fn access_window_system(mut windows: ResMut<Windows>){
/// for mut window in windows.iter_mut() {
/// window.set_title(String::from("Yay, I'm a window!"));
/// }
/// }
/// ```
#[derive(Debug)]
pub struct Window {
id: WindowId,
requested_width: f32,
requested_height: f32,
physical_width: u32,
physical_height: u32,
resize_constraints: WindowResizeConstraints,
position: Option<IVec2>,
scale_factor_override: Option<f64>,
backend_scale_factor: f64,
title: String,
present_mode: PresentMode,
resizable: bool,
decorations: bool,
cursor_icon: CursorIcon,
cursor_visible: bool,
cursor_locked: bool,
physical_cursor_position: Option<DVec2>,
raw_window_handle: RawWindowHandleWrapper,
focused: bool,
mode: WindowMode,
canvas: Option<String>,
fit_canvas_to_parent: bool,
command_queue: Vec<WindowCommand>,
}
/// A command to be sent to a window.
///
/// Bevy apps don't interact with this `enum` directly. Instead, they should use the methods on [`Window`].
/// This `enum` is meant for authors of windowing plugins. See the documentation on [`crate::WindowPlugin`] for more information.
#[derive(Debug)]
pub enum WindowCommand {
/// Set the window's [`WindowMode`].
SetWindowMode {
mode: WindowMode,
resolution: UVec2,
},
/// Set the window's title.
SetTitle {
title: String,
},
/// Set the window's scale factor.
SetScaleFactor {
scale_factor: f64,
},
/// Set the window's resolution.
SetResolution {
logical_resolution: Vec2,
scale_factor: f64,
},
/// Set the window's [`PresentMode`].
SetPresentMode {
present_mode: PresentMode,
},
/// Set whether or not the window is resizable.
SetResizable {
resizable: bool,
},
/// Set whether or not the window has decorations.
///
/// Examples of decorations include the close, full screen, and minimize buttons
SetDecorations {
decorations: bool,
},
/// Set whether or not the cursor's position is locked.
SetCursorLockMode {
locked: bool,
},
/// Set the cursor's [`CursorIcon`].
SetCursorIcon {
icon: CursorIcon,
},
/// Set whether or not the cursor is visible.
SetCursorVisibility {
visible: bool,
},
/// Set the cursor's position.
SetCursorPosition {
position: Vec2,
},
/// Set whether or not the window is maximized.
SetMaximized {
maximized: bool,
},
/// Set whether or not the window is minimized.
SetMinimized {
minimized: bool,
},
/// Set the window's position on the screen.
SetPosition {
position: IVec2,
},
/// Modifies the position of the window to be in the center of the current monitor
Center(MonitorSelection),
/// Set the window's [`WindowResizeConstraints`]
SetResizeConstraints {
resize_constraints: WindowResizeConstraints,
},
Close,
}
/// Defines the way a window is displayed.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum WindowMode {
/// Creates a window that uses the given size.
Windowed,
/// Creates a borderless window that uses the full size of the screen.
BorderlessFullscreen,
/// Creates a fullscreen window that will render at desktop resolution.
///
/// The app will use the closest supported size from the given size and scale it to fit the screen.
SizedFullscreen,
/// Creates a fullscreen window that uses the maximum supported size.
Fullscreen,
}
impl Window {
/// Creates a new [`Window`].
pub fn new(
id: WindowId,
window_descriptor: &WindowDescriptor,
physical_width: u32,
physical_height: u32,
scale_factor: f64,
position: Option<IVec2>,
raw_window_handle: RawWindowHandle,
) -> Self {
Window {
id,
requested_width: window_descriptor.width,
requested_height: window_descriptor.height,
position,
physical_width,
physical_height,
resize_constraints: window_descriptor.resize_constraints,
scale_factor_override: window_descriptor.scale_factor_override,
backend_scale_factor: scale_factor,
title: window_descriptor.title.clone(),
present_mode: window_descriptor.present_mode,
resizable: window_descriptor.resizable,
decorations: window_descriptor.decorations,
cursor_visible: window_descriptor.cursor_visible,
cursor_locked: window_descriptor.cursor_locked,
cursor_icon: CursorIcon::Default,
physical_cursor_position: None,
raw_window_handle: RawWindowHandleWrapper::new(raw_window_handle),
focused: true,
mode: window_descriptor.mode,
canvas: window_descriptor.canvas.clone(),
fit_canvas_to_parent: window_descriptor.fit_canvas_to_parent,
command_queue: Vec::new(),
}
}
/// Get the window's [`WindowId`].
#[inline]
pub fn id(&self) -> WindowId {
self.id
}
/// The current logical width of the window's client area.
#[inline]
pub fn width(&self) -> f32 {
(self.physical_width as f64 / self.scale_factor()) as f32
}
/// The current logical height of the window's client area.
#[inline]
pub fn height(&self) -> f32 {
(self.physical_height as f64 / self.scale_factor()) as f32
}
/// The requested window client area width in logical pixels from window
/// creation or the last call to [`set_resolution`](Window::set_resolution).
///
/// This may differ from the actual width depending on OS size limits and
/// the scaling factor for high DPI monitors.
#[inline]
pub fn requested_width(&self) -> f32 {
self.requested_width
}
/// The requested window client area height in logical pixels from window
/// creation or the last call to [`set_resolution`](Window::set_resolution).
///
/// This may differ from the actual width depending on OS size limits and
/// the scaling factor for high DPI monitors.
#[inline]
pub fn requested_height(&self) -> f32 {
self.requested_height
}
/// The window's client area width in physical pixels.
#[inline]
pub fn physical_width(&self) -> u32 {
self.physical_width
}
/// The window's client area height in physical pixels.
#[inline]
pub fn physical_height(&self) -> u32 {
self.physical_height
}
/// The window's client resize constraint in logical pixels.
#[inline]
pub fn resize_constraints(&self) -> WindowResizeConstraints {
self.resize_constraints
}
/// The window's client position in physical pixels.
#[inline]
pub fn position(&self) -> Option<IVec2> {
self.position
}
/// Set whether or not the window is maximized.
#[inline]
pub fn set_maximized(&mut self, maximized: bool) {
self.command_queue
.push(WindowCommand::SetMaximized { maximized });
}
/// Sets the window to minimized or back.
///
/// # Platform-specific
/// - iOS / Android / Web: Unsupported.
/// - Wayland: Un-minimize is unsupported.
#[inline]
pub fn set_minimized(&mut self, minimized: bool) {
self.command_queue
.push(WindowCommand::SetMinimized { minimized });
}
/// Modifies the position of the window in physical pixels.
///
/// Note that the top-left hand corner of the desktop is not necessarily the same as the screen.
/// If the user uses a desktop with multiple monitors, the top-left hand corner of the
/// desktop is the top-left hand corner of the monitor at the top-left of the desktop. This
/// automatically un-maximizes the window if it's maximized.
///
/// # Platform-specific
///
/// - iOS: Can only be called on the main thread. Sets the top left coordinates of the window in
/// the screen space coordinate system.
/// - Web: Sets the top-left coordinates relative to the viewport.
/// - Android / Wayland: Unsupported.
#[inline]
pub fn set_position(&mut self, position: IVec2) {
self.command_queue
.push(WindowCommand::SetPosition { position });
}
/// Modifies the position of the window to be in the center of the current monitor
///
/// # Platform-specific
/// - iOS: Can only be called on the main thread.
/// - Web / Android / Wayland: Unsupported.
#[inline]
pub fn center_window(&mut self, monitor_selection: MonitorSelection) {
self.command_queue
.push(WindowCommand::Center(monitor_selection));
}
/// Modifies the minimum and maximum window bounds for resizing in logical pixels.
#[inline]
pub fn set_resize_constraints(&mut self, resize_constraints: WindowResizeConstraints) {
self.command_queue
.push(WindowCommand::SetResizeConstraints { resize_constraints });
}
/// Request the OS to resize the window such the client area matches the specified
/// width and height.
#[allow(clippy::float_cmp)]
pub fn set_resolution(&mut self, width: f32, height: f32) {
if self.requested_width == width && self.requested_height == height {
return;
}
self.requested_width = width;
self.requested_height = height;
self.command_queue.push(WindowCommand::SetResolution {
logical_resolution: Vec2::new(self.requested_width, self.requested_height),
scale_factor: self.scale_factor(),
});
}
/// Override the os-reported scaling factor.
#[allow(clippy::float_cmp)]
pub fn set_scale_factor_override(&mut self, scale_factor: Option<f64>) {
if self.scale_factor_override == scale_factor {
return;
}
self.scale_factor_override = scale_factor;
self.command_queue.push(WindowCommand::SetScaleFactor {
scale_factor: self.scale_factor(),
});
self.command_queue.push(WindowCommand::SetResolution {
logical_resolution: Vec2::new(self.requested_width, self.requested_height),
scale_factor: self.scale_factor(),
});
}
#[allow(missing_docs)]
#[inline]
pub fn update_scale_factor_from_backend(&mut self, scale_factor: f64) {
self.backend_scale_factor = scale_factor;
}
#[allow(missing_docs)]
#[inline]
pub fn update_actual_size_from_backend(&mut self, physical_width: u32, physical_height: u32) {
self.physical_width = physical_width;
self.physical_height = physical_height;
}
#[allow(missing_docs)]
#[inline]
pub fn update_actual_position_from_backend(&mut self, position: IVec2) {
self.position = Some(position);
}
/// The ratio of physical pixels to logical pixels
///
/// `physical_pixels = logical_pixels * scale_factor`
pub fn scale_factor(&self) -> f64 {
self.scale_factor_override
.unwrap_or(self.backend_scale_factor)
}
/// The window scale factor as reported by the window backend.
///
/// This value is unaffected by [`scale_factor_override`](Window::scale_factor_override).
#[inline]
pub fn backend_scale_factor(&self) -> f64 {
self.backend_scale_factor
}
/// The scale factor set with [`set_scale_factor_override`](Window::set_scale_factor_override).
///
/// This value may be different from the scale factor reported by the window backend.
#[inline]
pub fn scale_factor_override(&self) -> Option<f64> {
self.scale_factor_override
}
/// Get the window's title.
#[inline]
pub fn title(&self) -> &str {
&self.title
}
/// Set the window's title.
pub fn set_title(&mut self, title: String) {
self.title = title.to_string();
self.command_queue.push(WindowCommand::SetTitle { title });
}
#[inline]
#[doc(alias = "vsync")]
/// Get the window's [`PresentMode`].
pub fn present_mode(&self) -> PresentMode {
self.present_mode
}
#[inline]
#[doc(alias = "set_vsync")]
/// Set the window's [`PresentMode`].
pub fn set_present_mode(&mut self, present_mode: PresentMode) {
self.present_mode = present_mode;
self.command_queue
.push(WindowCommand::SetPresentMode { present_mode });
}
/// Get whether or not the window is resizable.
#[inline]
pub fn resizable(&self) -> bool {
self.resizable
}
/// Set whether or not the window is resizable.
pub fn set_resizable(&mut self, resizable: bool) {
self.resizable = resizable;
self.command_queue
.push(WindowCommand::SetResizable { resizable });
}
/// Get whether or not decorations are enabled.
///
/// (Decorations are the minimize, maximize, and close buttons on desktop apps)
///
/// ## Platform-specific
///
/// **`iOS`**, **`Android`**, and the **`Web`** do not have decorations.
#[inline]
pub fn decorations(&self) -> bool {
self.decorations
}
/// Set whether or not decorations are enabled.
///
/// (Decorations are the minimize, maximize, and close buttons on desktop apps)
///
/// ## Platform-specific
///
/// **`iOS`**, **`Android`**, and the **`Web`** do not have decorations.
pub fn set_decorations(&mut self, decorations: bool) {
self.decorations = decorations;
self.command_queue
.push(WindowCommand::SetDecorations { decorations });
}
/// Get whether or not the cursor is locked.
///
/// ## Platform-specific
///
/// - **`macOS`** doesn't support cursor lock, but most windowing plugins can emulate it. See [issue #4875](https://github.com/bevyengine/bevy/issues/4875#issuecomment-1153977546) for more information.
/// - **`iOS/Android`** don't have cursors.
#[inline]
pub fn cursor_locked(&self) -> bool {
self.cursor_locked
}
/// Set whether or not the cursor is locked.
///
/// This doesn't hide the cursor. For that, use [`set_cursor_visibility`](Window::set_cursor_visibility)
///
/// ## Platform-specific
///
/// - **`macOS`** doesn't support cursor lock, but most windowing plugins can emulate it. See [issue #4875](https://github.com/bevyengine/bevy/issues/4875#issuecomment-1153977546) for more information.
/// - **`iOS/Android`** don't have cursors.
pub fn set_cursor_lock_mode(&mut self, lock_mode: bool) {
self.cursor_locked = lock_mode;
self.command_queue
.push(WindowCommand::SetCursorLockMode { locked: lock_mode });
}
/// Get whether or not the cursor is visible.
///
/// ## Platform-specific
///
/// - **`Windows`**, **`X11`**, and **`Wayland`**: The cursor is hidden only when inside the window. To stop the cursor from leaving the window, use [`set_cursor_lock_mode`](Window::set_cursor_lock_mode).
/// - **`macOS`**: The cursor is hidden only when the window is focused.
/// - **`iOS`** and **`Android`** do not have cursors
#[inline]
pub fn cursor_visible(&self) -> bool {
self.cursor_visible
}
/// Set whether or not the cursor is visible.
///
/// ## Platform-specific
///
/// - **`Windows`**, **`X11`**, and **`Wayland`**: The cursor is hidden only when inside the window. To stop the cursor from leaving the window, use [`set_cursor_lock_mode`](Window::set_cursor_lock_mode).
/// - **`macOS`**: The cursor is hidden only when the window is focused.
/// - **`iOS`** and **`Android`** do not have cursors
pub fn set_cursor_visibility(&mut self, visible_mode: bool) {
self.cursor_visible = visible_mode;
self.command_queue.push(WindowCommand::SetCursorVisibility {
visible: visible_mode,
});
}
/// Get the current [`CursorIcon`]
#[inline]
pub fn cursor_icon(&self) -> CursorIcon {
self.cursor_icon
}
/// Set the [`CursorIcon`]
pub fn set_cursor_icon(&mut self, icon: CursorIcon) {
self.command_queue
.push(WindowCommand::SetCursorIcon { icon });
}
/// The current mouse position, in physical pixels.
#[inline]
pub fn physical_cursor_position(&self) -> Option<DVec2> {
self.physical_cursor_position
}
/// The current mouse position, in logical pixels, taking into account the screen scale factor.
#[inline]
#[doc(alias = "mouse position")]
pub fn cursor_position(&self) -> Option<Vec2> {
self.physical_cursor_position
.map(|p| (p / self.scale_factor()).as_vec2())
}
/// Set the cursor's position
pub fn set_cursor_position(&mut self, position: Vec2) {
self.command_queue
.push(WindowCommand::SetCursorPosition { position });
}
#[allow(missing_docs)]
#[inline]
pub fn update_focused_status_from_backend(&mut self, focused: bool) {
self.focused = focused;
}
#[allow(missing_docs)]
#[inline]
pub fn update_cursor_physical_position_from_backend(&mut self, cursor_position: Option<DVec2>) {
self.physical_cursor_position = cursor_position;
}
/// Get the window's [`WindowMode`]
#[inline]
pub fn mode(&self) -> WindowMode {
self.mode
}
/// Set the window's [`WindowMode`]
pub fn set_mode(&mut self, mode: WindowMode) {
self.mode = mode;
self.command_queue.push(WindowCommand::SetWindowMode {
mode,
resolution: UVec2::new(self.physical_width, self.physical_height),
});
}
/// Close the operating system window corresponding to this [`Window`].
///
/// This will also lead to this [`Window`] being removed from the
/// [`Windows`] resource.
///
/// If the default [`WindowPlugin`] is used, when no windows are
/// open, the [app will exit](bevy_app::AppExit).
/// To disable this behaviour, set `exit_on_all_closed` on the [`WindowPlugin`]
/// to `false`
///
/// [`Windows`]: crate::Windows
/// [`WindowPlugin`]: crate::WindowPlugin
pub fn close(&mut self) {
self.command_queue.push(WindowCommand::Close);
}
#[inline]
pub fn drain_commands(&mut self) -> impl Iterator<Item = WindowCommand> + '_ {
self.command_queue.drain(..)
}
/// Get whether or not the window has focus.
///
/// A window loses focus when the user switches to another window, and regains focus when the user uses the window again
#[inline]
pub fn is_focused(&self) -> bool {
self.focused
}
/// Get the [`RawWindowHandleWrapper`] corresponding to this window
pub fn raw_window_handle(&self) -> RawWindowHandleWrapper {
self.raw_window_handle.clone()
}
/// The "html canvas" element selector.
///
/// If set, this selector will be used to find a matching html canvas element,
/// rather than creating a new one.
/// Uses the [CSS selector format](https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector).
///
/// This value has no effect on non-web platforms.
#[inline]
pub fn canvas(&self) -> Option<&str> {
self.canvas.as_deref()
}
/// Whether or not to fit the canvas element's size to its parent element's size.
///
/// **Warning**: this will not behave as expected for parents that set their size according to the size of their
/// children. This creates a "feedback loop" that will result in the canvas growing on each resize. When using this
/// feature, ensure the parent's size is not affected by its children.
///
/// This value has no effect on non-web platforms.
#[inline]
pub fn fit_canvas_to_parent(&self) -> bool {
self.fit_canvas_to_parent
}
}
/// Defines where window should be placed at on creation.
#[derive(Debug, Clone, Copy)]
pub enum WindowPosition {
/// Position will be set by the window manager
Automatic,
/// Window will be centered on the selected monitor
///
/// Note that this does not account for window decorations.
Centered(MonitorSelection),
/// The window's top-left corner will be placed at the specified position (in pixels)
///
/// (0,0) represents top-left corner of screen space.
At(Vec2),
}
/// Defines which monitor to use.
#[derive(Debug, Clone, Copy)]
pub enum MonitorSelection {
/// Uses current monitor of the window.
Current,
/// Uses primary monitor of the system.
Primary,
/// Uses monitor with the specified index.
Number(usize),
}
/// Describes the information needed for creating a window.
///
/// This should be set up before adding the [`WindowPlugin`](crate::WindowPlugin).
/// Most of these settings can also later be configured through the [`Window`](crate::Window) resource.
///
/// See [`examples/window/window_settings.rs`] for usage.
///
/// [`examples/window/window_settings.rs`]: https://github.com/bevyengine/bevy/blob/latest/examples/window/window_settings.rs
#[derive(Debug, Clone)]
pub struct WindowDescriptor {
/// The requested logical width of the window's client area.
///
/// May vary from the physical width due to different pixel density on different monitors.
pub width: f32,
/// The requested logical height of the window's client area.
///
/// May vary from the physical height due to different pixel density on different monitors.
pub height: f32,
/// The position on the screen that the window will be placed at.
pub position: WindowPosition,
/// Sets minimum and maximum resize limits.
pub resize_constraints: WindowResizeConstraints,
/// Overrides the window's ratio of physical pixels to logical pixels.
///
/// If there are some scaling problems on X11 try to set this option to `Some(1.0)`.
pub scale_factor_override: Option<f64>,
/// Sets the title that displays on the window top bar, on the system task bar and other OS specific places.
///
/// ## Platform-specific
/// - Web: Unsupported.
pub title: String,
/// Controls when a frame is presented to the screen.
#[doc(alias = "vsync")]
/// The window's [`PresentMode`].
///
/// Used to select whether or not VSync is used
pub present_mode: PresentMode,
/// Sets whether the window is resizable.
///
/// ## Platform-specific
/// - iOS / Android / Web: Unsupported.
pub resizable: bool,
/// Sets whether the window should have borders and bars.
pub decorations: bool,
/// Sets whether the cursor is visible when the window has focus.
pub cursor_visible: bool,
/// Sets whether the window locks the cursor inside its borders when the window has focus.
pub cursor_locked: bool,
/// Sets the [`WindowMode`](crate::WindowMode).
pub mode: WindowMode,
/// Sets whether the background of the window should be transparent.
///
/// ## Platform-specific
/// - iOS / Android / Web: Unsupported.
/// - macOS X: Not working as expected.
/// - Windows 11: Not working as expected
/// macOS X transparent works with winit out of the box, so this issue might be related to: <https://github.com/gfx-rs/wgpu/issues/687>
/// Windows 11 is related to <https://github.com/rust-windowing/winit/issues/2082>
pub transparent: bool,
/// The "html canvas" element selector.
///
/// If set, this selector will be used to find a matching html canvas element,
/// rather than creating a new one.
/// Uses the [CSS selector format](https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector).
///
/// This value has no effect on non-web platforms.
pub canvas: Option<String>,
/// Whether or not to fit the canvas element's size to its parent element's size.
///
/// **Warning**: this will not behave as expected for parents that set their size according to the size of their
/// children. This creates a "feedback loop" that will result in the canvas growing on each resize. When using this
/// feature, ensure the parent's size is not affected by its children.
///
/// This value has no effect on non-web platforms.
pub fit_canvas_to_parent: bool,
}
impl Default for WindowDescriptor {
fn default() -> Self {
WindowDescriptor {
title: "app".to_string(),
width: 1280.,
height: 720.,
position: WindowPosition::Automatic,
resize_constraints: WindowResizeConstraints::default(),
scale_factor_override: None,
present_mode: PresentMode::Fifo,
resizable: true,
decorations: true,
cursor_locked: false,
cursor_visible: true,
mode: WindowMode::Windowed,
transparent: false,
canvas: None,
fit_canvas_to_parent: false,
}
}
}